Yield Temperature Dcbf5E
1. **Problem Statement:**
Find the least squares regression equation for yield $y$ as a linear function of temperature $x$ using the data:
$$x: 0, 25, 50, 75, 100$$
$$y: 14, 38, 54, 76, 95$$
2. **Formula for Least Squares Regression Line:**
The regression line is given by:
$$y = b_0 + b_1 x$$
where
$$b_1 = \frac{n\sum xy - \sum x \sum y}{n\sum x^2 - (\sum x)^2}$$
$$b_0 = \bar{y} - b_1 \bar{x}$$
3. **Calculate sums and means:**
$$n=5$$
$$\sum x = 0 + 25 + 50 + 75 + 100 = 250$$
$$\sum y = 14 + 38 + 54 + 76 + 95 = 277$$
$$\sum x^2 = 0^2 + 25^2 + 50^2 + 75^2 + 100^2 = 0 + 625 + 2500 + 5625 + 10000 = 18750$$
$$\sum xy = 0\times14 + 25\times38 + 50\times54 + 75\times76 + 100\times95 = 0 + 950 + 2700 + 5700 + 9500 = 18850$$
$$\bar{x} = \frac{250}{5} = 50$$
$$\bar{y} = \frac{277}{5} = 55.4$$
4. **Calculate slope $b_1$:**
$$b_1 = \frac{5 \times 18850 - 250 \times 277}{5 \times 18750 - 250^2} = \frac{94250 - 69250}{93750 - 62500} = \frac{25000}{31250} = 0.8$$
5. **Calculate intercept $b_0$:**
$$b_0 = 55.4 - 0.8 \times 50 = 55.4 - 40 = 15.4$$
6. **Regression equation:**
$$y = 15.4 + 0.8x$$
7. **Interpretation:**
The yield increases by 0.8 grams for each degree Celsius increase in temperature.
8. **Significance test for relationship at 1% level:**
Calculate correlation coefficient $r$ and test $H_0: \rho=0$ vs $H_a: \rho \neq 0$.
9. **Calculate $r$:**
$$r = \frac{n\sum xy - \sum x \sum y}{\sqrt{(n\sum x^2 - (\sum x)^2)(n\sum y^2 - (\sum y)^2)}}$$
Calculate $\sum y^2$:
$$14^2 + 38^2 + 54^2 + 76^2 + 95^2 = 196 + 1444 + 2916 + 5776 + 9025 = 19357$$
Calculate denominator:
$$\sqrt{(5 \times 18750 - 250^2)(5 \times 19357 - 277^2)} = \sqrt{(93750 - 62500)(96785 - 76729)} = \sqrt{31250 \times 20056} \approx \sqrt{627000000} \approx 25039.99$$
Calculate numerator:
$$5 \times 18850 - 250 \times 277 = 94250 - 69250 = 25000$$
So,
$$r = \frac{25000}{25039.99} \approx 0.9984$$
10. **Test statistic:**
$$t = r \sqrt{\frac{n-2}{1-r^2}} = 0.9984 \sqrt{\frac{3}{1 - 0.9968}} = 0.9984 \sqrt{\frac{3}{0.0032}} = 0.9984 \times 30.62 = 30.57$$
11. **Critical value:**
For $\alpha=0.01$ and $df=3$, two-tailed $t$ critical value is approximately 5.841.
12. **Decision:**
Since $30.57 > 5.841$, reject $H_0$. There is a significant relationship between yield and temperature at 1% significance level.
**Final answers:**
- Estimated regression equation: $$y = 15.4 + 0.8x$$
- Significant relationship exists between yield and temperature at 1% level.