Statistics Tests
1. **Question 1: Acceptance probability for lot size $N=25$ with 2 nonconforming**
(a) Problem: Probability of lot acceptance means selecting 0 nonconforming components in a sample of 5 from 25 total with 2 nonconforming.
Calculate hypergeometric probability:
Number of conforming = $25 - 2 = 23$
$$P = \frac{\binom{23}{5}}{\binom{25}{5}}$$
Calculate numerator and denominator:
$$\binom{23}{5} = \frac{23!}{5!18!} = 33649$$
$$\binom{25}{5} = \frac{25!}{5!20!} = 53130$$
Thus,
$$P = \frac{33649}{53130} \approx 0.6336$$
(b) Binomial approximation:
Approximate probability $p = \frac{2}{25} = 0.08$
$$P = (1-p)^5 = (1 - 0.08)^5 = 0.92^5 \approx 0.6591$$
Difference with exact:
$$0.6591 - 0.6336 = 0.0255$$
The binomial overestimates slightly but is a reasonable approximation.
(c) For $N=150$ and 2 nonconforming:
$$p=\frac{2}{150}=0.0133$$
Sample size $n=5 \ll N$, so binomial approximation is good here.
2. **Question 2: Tensile strength $X \sim N(40,5^2)$, $50,000$ parts, minimum spec $=35$ lb**
(a) Calculate number failing ($X<35$):
Standardize:
$$Z = \frac{35 - 40}{5} = -1.0$$
From normal table, $P(Z < -1.0) \approx 0.1587$
Expected failures:
$$50,000 \times 0.1587 = 7,935$$
(b) Number with $X>48$:
$$Z = \frac{48 - 40}{5} = 1.6$$
$$P(Z > 1.6) = 1 - 0.9452 = 0.0548$$
Expected number:
$$50,000 \times 0.0548 = 2,740$$
3. **Question 3: Battery life $X \sim N(900,35^2)$, fraction surviving beyond 1000 days**
$$Z = \frac{1000 - 900}{35} = 2.857$$
$$P(X > 1000) = P(Z > 2.857) = 1 - 0.9979 = 0.0021$$
Fraction surviving beyond 1000 days is approximately $0.0021$.
4. **Question 4: Diameter sample $n=15$, $\bar{x}=8.2535$, $\sigma=0.002$, test $H_0: \mu=8.25$ vs $H_a: \mu\neq8.25$, $\alpha=0.05$**
(a) Test statistic:
$$Z = \frac{8.2535 - 8.25}{0.002 / \sqrt{15}} = \frac{0.0035}{0.0005164} \approx 6.77$$
Critical value $z_{0.025} = 1.96$
Since $6.77 > 1.96$, reject $H_0$.
(b) P-value~$ < 0.0001$, very strong evidence against $H_0$.
(c) 95% CI:
$$8.2535 \pm 1.96 \times 0.0005164 = (8.2525, 8.2545)$$
5. **Question 5: Voltage sample $n=16$, data given; sample mean $\approx 10.15$, variance $\approx 0.78$**
(a) Test $H_0: \mu=12$ vs two-sided, $\alpha=0.05$ using t-test:
$$t = \frac{10.15 - 12}{\sqrt{0.78} / 4} = \frac{-1.85}{0.221} \approx -8.37$$
Degrees freedom $df=15$, critical $t_{0.025,15} = 2.131$
$|t|=8.37 > 2.131$, reject $H_0$.
(b) 95% CI for $\mu$:
$$10.15 \pm 2.131 \times 0.221 = (9.62, 10.68)$$
(c) Test $H_0: \sigma^2=11$, $\chi^2$ test:
$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{15 \times 0.78}{11} = 1.064$$
Critical values for $df=15$: Lower $6.262$, Upper $27.488$
Since $1.064 < 6.262$, reject $H_0$.
(d) 95% CI for $\sigma$:
$$ \left( \sqrt{\frac{15 \times 0.78}{27.488}}, \sqrt{\frac{15 \times 0.78}{6.262}} \right) = (0.655, 1.363) $$
(e) 95% upper CI for $\sigma$:
$$ \sqrt{\frac{15 \times 0.78}{7.261}} = 1.13 $$
6. **Question 6: Sample size $n=500$, defective $x=65$, $\hat{p} = 0.13$**
(a) Test $H_0: p=0.08$ vs two-sided, $\alpha=0.05$:
$$z = \frac{0.13 - 0.08}{\sqrt{0.08 \times 0.92 / 500}} = \frac{0.05}{0.0121} \approx 4.13$$
Critical $z_{0.025} = 1.96$, reject $H_0$.
(b) P-value:
$$2 \times P(Z > 4.13) \approx 2 \times 0.000018 = 0.000036$$
(c) 95% upper confidence bound:
$$0.13 + 1.645 \times \sqrt{\frac{0.13 \times 0.87}{500}} = 0.13 + 0.0277 = 0.1577$$
7. **Question 7: Paired caliper measurements by 12 inspectors, test mean difference = 0 at $\alpha=0.01$**
Mean difference:
$$\bar{d} = \frac{-0.005}{12} = -0.00042$$
Std dev $s_d = 0.0013$
Test statistic:
$$t = \frac{-0.00042}{0.0013 / \sqrt{12}} = 1.11$$
Critical $t_{0.005,11} = 3.106$
Since $1.11 < 3.106$, fail to reject $H_0$.
No significant difference.
8. **Question 8: ANOVA for compressive strength at levels 10,15,20,25 (3 replicates each)**
Group means:
Level 10: 1500
Level 15: 1586.67
Level 20: 1606.67
Level 25: 1500
Overall mean:
$$\bar{x} = \frac{1500 + 1586.67 + 1606.67 + 1500}{4} = 1548.33$$
F-statistic calculated to be approximately 10.
Critical $F_{3,8,0.05} \approx 4.07$.
Since $10 > 4.07$, reject $H_0$.
Conclusion: Significant difference in compressive strength due to rodding level.