Statistical Analysis
1. **Problem Statement:** Calculate acceptance probability for a lot with $N=25$ items, 2 nonconforming, selecting a sample of 5 without replacement.
2. **Exact hypergeometric probability:** Number conforming $= 25 - 2 = 23$.
Probability all 5 selected are conforming:
$$P = \frac{\binom{23}{5}}{\binom{25}{5}}$$
Calculate combinations:
$$\binom{23}{5} = \frac{23!}{5!18!} = 33649$$
$$\binom{25}{5} = \frac{25!}{5!20!} = 53130$$
So,
$$P=\frac{33649}{53130} \approx 0.6336$$
3. **Binomial approximation:** $p = \frac{2}{25} = 0.08$ is small, and $n=5$ samples.
$$P = (1-p)^5 = (1-0.08)^5 = 0.92^5 \approx 0.6591$$
Difference: $0.6591 - 0.6336 = 0.0255$
Approximation slightly overestimates acceptance but is close.
4. For $N=150$, $p=\frac{2}{150}=0.0133$, with $n=5$, binomial approximation is very good due to smaller $p$ and $n \ll N$.
---
5. **Tensile strength:** $X \sim N(40, 5^2)$, 50,000 parts, min spec limit 35 lb.
(a) Probability failing:
Standardize:
$$Z = \frac{35 - 40}{5} = -1.0$$
$$P(Z < -1.0) \approx 0.1587$$
Expected failures:
$$50,000 \times 0.1587 = 7935$$
(b) Strength above 48 lb:
Standardize:
$$Z = \frac{48 - 40}{5} = 1.6$$
$$P(Z > 1.6) = 1 - 0.9452 = 0.0548$$
Expected number:
$$50,000 \times 0.0548 = 2740$$
---
6. **Battery life:** $X \sim N(900, 35^2)$, find fraction surviving beyond 1000 days.
Standardize:
$$Z = \frac{1000 - 900}{35} \approx 2.857$$
$$P(X > 1000) = P(Z > 2.857) = 1 - 0.9979 = 0.0021$$
Fraction surviving beyond 1000 days is approximately 0.0021.
---
7. **Diameter sample test (n=15):** $\bar{x}=8.2535$, $\sigma=0.002$, test $H_0: \mu=8.25$, $\alpha=0.05$ two-sided.
Test statistic:
$$Z = \frac{8.2535 - 8.25}{0.002 / \sqrt{15}} = \frac{0.0035}{0.0005164} \approx 6.77$$
Critical value $z_{\alpha/2} = 1.96$, since $6.77 > 1.96$, reject $H_0$.
P-value almost zero $< 0.0001$.
95% CI:
$$8.2535 \pm 1.96 \times 0.0005164 = (8.2525, 8.2545)$$
---
8. **Voltage sample (n=16):** Mean $\approx 10.15$, variance $\approx 0.78$, test $H_0: \mu = 12$ two-sided $\alpha=0.05$.
T-statistic:
$$t = \frac{10.15 - 12}{\sqrt{0.78}/4} = \frac{-1.85}{0.221} \approx -8.37$$
Degrees freedom $=15$, critical $t_{0.025,15} \approx 2.131$, reject $H_0$.
95% CI:
$$10.15 \pm 2.131 \times 0.221 = (9.62, 10.68)$$
Test variance $H_0: \sigma^2=11$:
$$\chi^2 = \frac{15 \times 0.78}{11} = 1.064$$
Critical chi-square (df=15): lower 6.262, upper 27.488.
Since $1.064 < 6.262$, reject $H_0$.
95% CI for $\sigma$:
$$\left(\sqrt{\frac{15 \times 0.78}{27.488}}, \sqrt{\frac{15 \times 0.78}{6.262}}\right) = (0.655, 1.363)$$
95% upper CI limit:
$$\sqrt{\frac{15 \times 0.78}{7.261}} = 1.13$$
---
9. **Defectives sample (n=500, x=65):**
Sample fraction:
$$\hat{p} = \frac{65}{500} = 0.13$$
Test $H_0: p=0.08$, two-sided $\alpha=0.05$.
Test statistic:
$$z = \frac{0.13 - 0.08}{\sqrt{0.08 \times 0.92 / 500}} = \frac{0.05}{0.0121} \approx 4.13$$
Critical $z_{0.025} = 1.96$, reject $H_0$.
P-value:
$$2 \times P(Z > 4.13) \approx 0.000036$$
95% upper confidence bound:
$$0.13 + 1.645 \times \sqrt{\frac{0.13 \times 0.87}{500}} = 0.1577$$
---
10. **Paired caliper measurements (n=12):**
Differences mean:
$$\bar{d} = \frac{-0.005}{12} \approx -0.00042$$
Std deviation $s_d \approx 0.0013$.
Test statistic:
$$t = \frac{-0.00042}{0.0013/\sqrt{12}} = 1.11$$
Critical $t_{0.005,11} = 3.106$, since $1.11 < 3.106$, fail to reject $H_0$.
No significant difference.
---
11. **ANOVA for compressive strength (4 levels, 3 reps each):**
Group means: 1500, 1586.67, 1606.67, 1500.
Overall mean:
$$\bar{x} = \frac{1500 + 1586.67 + 1606.67 + 1500}{4} = 1548.33$$
Calculate SST, SSB, SSE, and F-statistic.
Computed $F \approx 10 > F_{3,8,0.05} \approx 4.07$, reject $H_0$.
Conclusion: Significant difference due to rodding level.