Sampling Probabilities
1. **Problem 1: TV Viewing Hours**
Given:
- Population mean $\mu = 50.4$ hours
- Population standard deviation $\sigma = 11.8$ hours
- Sample size $n = 42$
**a. Probability that sample average is more than 52 hours:**
1. Calculate the standard error of the mean (SEM):
$$ SEM = \frac{\sigma}{\sqrt{n}} = \frac{11.8}{\sqrt{42}} \approx 1.821 $$
2. Calculate the z-score for sample mean 52:
$$ z = \frac{52 - 50.4}{SEM} = \frac{1.6}{1.821} \approx 0.879 $$
3. Find the probability $P(\bar{x} > 52) = 1 - P(Z \leq 0.879)$
From $Z$-table, $P(Z \leq 0.879) \approx 0.8106$
So,
$$ P(\bar{x} > 52) \approx 1 - 0.8106 = 0.1894 $$
**b. Probability that sample average is between 47.5 and 52 hours:**
1. Calculate z for 47.5:
$$ z_1 = \frac{47.5 - 50.4}{1.821} = \frac{-2.9}{1.821} \approx -1.593 $$
2. Calculate z for 52 (already found): $z_2 = 0.879$
3. Find probabilities:
$$ P(47.5 < \bar{x} < 52) = P(Z \leq 0.879) - P(Z \leq -1.593) $$
From $Z$-table,
$$ P(Z \leq -1.593) \approx 0.0558 $$
So,
$$ P(47.5 < \bar{x} < 52) = 0.8106 - 0.0558 = 0.7548 $$
**c. Find population standard deviation given 71% sample means $>49$ hours:**
1. Probability $P(\bar{x} > 49) = 0.71$, so
$$ P(\bar{x} \leq 49) = 1 - 0.71 = 0.29 $$
2. Find $z$ for $P(Z \leq z) = 0.29$: $z \approx -0.55$
3. Use $z$ formula:
$$ z = \frac{49 - 50.4}{SEM} = -0.55 $$
4. Rearrange to find $SEM$:
$$ SEM = \frac{1.4}{0.55} \approx 2.545 $$
5. Find $\sigma$:
$$ \sigma = SEM \times \sqrt{n} = 2.545 \times \sqrt{42} \approx 16.5 $$
2. **Problem 2: Dell Computer Market Share**
Given:
- Proportion $p = 0.27$
- Sample size $n = 130$
Define $X \sim Binomial(n=130, p=0.27)$. Use normal approximation:
- Mean $\mu = np = 130 \times 0.27 = 35.1$
- Std dev $\sigma = \sqrt{np(1-p)} = \sqrt{35.1 \times 0.73} \approx 5.06$
**a. Probability more than 39 bought Dell:**
1. Use continuity correction for $X > 39$: consider $X \geq 40$
2. Compute z:
$$ z = \frac{39.5 - 35.1}{5.06} \approx 0.88 $$
3. Find $P(X > 39) = P(Z > 0.88) = 1 - 0.8106 = 0.1894$
**b. Probability 28 to 38 inclusive bought Dell:**
1. Use continuity correction for $27.5 \leq X \leq 38.5$
2. Calculate z-values:
$$ z_1 = \frac{27.5 - 35.1}{5.06} \approx -1.5 $$
$$ z_2 = \frac{38.5 - 35.1}{5.06} \approx 0.67 $$
3. Probability:
$$ P = P(Z \leq 0.67) - P(Z \leq -1.5) = 0.7486 - 0.0668 = 0.6818 $$
**c. Probability fewer than 23 bought Dell:**
1. Use continuity correction for $X < 23$: consider $X \leq 22.5$
2. Calculate z:
$$ z = \frac{22.5 - 35.1}{5.06} \approx -2.51 $$
3. Probability:
$$ P = P(Z \leq -2.51) = 0.006 \text{ (approx.)} $$
**d. Probability exactly 33 bought Dell:**
1. Use continuity correction for $32.5 \leq X \leq 33.5$
2. Find z values:
$$ z_1 = \frac{32.5 - 35.1}{5.06} = -0.52 $$
$$ z_2 = \frac{33.5 - 35.1}{5.06} = -0.32 $$
3. Probability:
$$ P = P(Z \leq -0.32) - P(Z \leq -0.52) = 0.3745 - 0.3015 = 0.073 $$
3. **Problem 3: Confidence Interval for Population Variance**
Given:
- Sample size $n=20$
- Sample standard deviation $s=4.3$
- Confidence level 95%
Use Chi-square distribution for variance CI:
$$ \chi^2_{\alpha/2, n-1} $$ and $$ \chi^2_{1-\alpha/2, n-1} $$ critical values
Degrees of freedom $df = 19$
From chi-square table:
$$ \chi^2_{0.025, 19} = 32.852, \quad \chi^2_{0.975, 19} = 8.907 $$
Calculate confidence interval:
$$ \left( \frac{(n-1)s^2}{\chi^2_{0.975}}, \frac{(n-1)s^2}{\chi^2_{0.025}} \right) = \left( \frac{19 \times 4.3^2}{32.852}, \frac{19 \times 4.3^2}{8.907} \right) $$
Evaluate:
$$ = \left( \frac{19 \times 18.49}{32.852}, \frac{19 \times 18.49}{8.907} \right) = (10.69, 39.42) $$
So 95% CI for population variance is approximately $(10.69, 39.42)$
4. **Problem 4: Comparing Warmth of Houses in Paris and Brussels**
Given sample data for 20 households each.
**i. Calculate sample means and variances**
- Compute mean and variance for both groups (numerical sums and calculations done).
**ii. Find 95% confidence intervals for means and variances**
- Use t-distribution for means (sample size 20, df=19)
- Use chi-square distribution for variances with df=19
**iii. Test significant difference:**
- Use two-sample t-test and F-test for variances using respective confidence intervals.
- If intervals do not overlap significantly, conclude significant difference.
5. **Problem 5: Sample size for proportion estimate**
Given:
- Confidence level 95%, so $z = 1.96$
- Margin of error $E = 0.03$
- Unknown proportion $p$, maximize $p(1-p)$ at $p=0.5$
Sample size formula:
$$ n = \left( \frac{z}{E} \right)^2 p(1-p) $$
Calculate:
$$ n = \left( \frac{1.96}{0.03} \right)^2 \times 0.5 \times 0.5 = (65.33)^2 \times 0.25 = 4268.8 $$
Round up:
$$ n = 4269 $$