Quality Testing Statistics
1. **Acceptance Probability, Lot Size N=25, 2 Nonconforming**
(a) Probability all 5 selected are conforming (Hypergeometric):
Number conforming = $25 - 2 = 23$
$$P = \frac{\binom{23}{5}}{\binom{25}{5}}$$
Calculate numerator and denominator:
$$\binom{23}{5} = \frac{23!}{5! \times 18!} = 33,649$$
$$\binom{25}{5} = \frac{25!}{5! \times 20!} = 53,130$$
Therefore:
$$P = \frac{33,649}{53,130} \approx 0.6336$$
(b) Binomial approximation:
Probability nonconforming in one draw:
$$p = \frac{2}{25} = 0.08$$
Probability all 5 conforming:
$$P = (1 - p)^5 = (0.92)^5 \approx 0.6591$$
Difference:
$$0.6591 - 0.6336 = 0.0255$$
Approximation slightly overestimates probability.
(c) For $N=150$ with 2 nonconforming and $n=5$, $p = \frac{2}{150} = 0.0133$, binomial approximation is better because $n \ll N$ and small $p$.
2. **Tensile Strength $X \sim N(40, 5^2)$, 50,000 parts**
(a) Number failing below 35 lb:
Standardize:
$$Z = \frac{35 - 40}{5} = -1.0$$
Probability:
$$P(Z < -1.0) \approx 0.1587$$
Expected failures:
$$50,000 \times 0.1587 = 7,935$$
(b) Number exceeding 48 lb:
$$Z = \frac{48 - 40}{5} = 1.6$$
$$P(Z > 1.6) = 1 - 0.9452 = 0.0548$$
Expected number:
$$50,000 \times 0.0548 = 2,740$$
3. **Battery Life $X \sim N(900, 35^2)$**
Fraction surviving beyond 1000 days:
$$Z = \frac{1000 - 900}{35} \approx 2.857$$
$$P(X > 1000) = P(Z > 2.857) = 1 - 0.9979 = 0.0021$$
4. **Diameter Sample, $n=15$, $\bar{x}=8.2535$, $\sigma=0.002$, Test $H_0: \mu=8.25$, $\alpha=0.05$**
(a) Test statistic:
$$Z = \frac{8.2535 - 8.25}{0.002/\sqrt{15}} = \frac{0.0035}{0.0005164} \approx 6.77$$
Critical value $z_{\alpha/2} = 1.96$, so reject $H_0$.
(b) P-value is very small, $<0.0001$.
(c) 95% CI:
$$8.2535 \pm 1.96 \times 0.0005164 = (8.2525, 8.2545)$$
5. **Voltage sample, $n=16$**
Mean $\approx 10.15$, variance $\approx 0.78$
(a) Test $H_0: \mu=12$ vs two-sided at $\alpha=0.05$:
$$t = \frac{10.15 - 12}{\sqrt{0.78}/4} = \frac{-1.85}{0.221} \approx -8.37$$
Critical $t_{0.025,15} \approx 2.131$, reject $H_0$.
(b) 95% CI:
$$10.15 \pm 2.131 \times 0.221 = (9.62, 10.68)$$
(c) Test $H_0: \sigma^2=11$,
$$\chi^2 = \frac{(15)(0.78)}{11} = 1.064$$
Critical values: Lower=6.262, Upper=27.488, so reject $H_0$.
(d) 95% CI for $\sigma$:
$$\left( \sqrt{\frac{15 \times 0.78}{27.488}}, \sqrt{\frac{15 \times 0.78}{6.262}} \right) = (0.655, 1.363)$$
(e) 95% upper CI for $\sigma$:
$$\sqrt{\frac{15 \times 0.78}{7.261}} = 1.13$$
6. **Sample size $n=500$, defects $x=65$**
Sample fraction:
$$\hat{p} = \frac{65}{500} = 0.13$$
(a) Test $H_0: p=0.08$:
$$z = \frac{0.13 - 0.08}{\sqrt{0.08 \times 0.92 / 500}} = \frac{0.05}{0.0121} \approx 4.13$$
Reject $H_0$ (critical $z=1.96$).
(b) P-value:
$$2 \times P(Z > 4.13) \approx 2 \times 0.000018 = 0.000036$$
(c) 95% upper CI:
$$0.13 + 1.645 \times \sqrt{\frac{0.13 \times 0.87}{500}} = 0.1577$$
7. **Paired Caliper Measurements, $n=12$**
Mean difference:
$$\bar{d} = \frac{-0.005}{12} \approx -0.00042$$
Std deviation $s_d \approx 0.0013$
Test statistic:
$$t = \frac{-0.00042}{0.0013 / \sqrt{12}} \approx 1.11$$
Critical $t_{0.005,11} = 3.106$, fail to reject $H_0$.
8. **ANOVA for Compressive Strength, 4 levels with 3 replicates**
Group means: 1500, 1586.67, 1606.67, 1500
Overall mean:
$$1548.33$$
Calculated $F \approx 10$ vs critical $4.07$, reject $H_0$.
Significant difference due to rodding level.