Quality Control
1. **Problem Statement:** We analyze the quality control data of light bulbs using various probability distributions and statistical methods.
---
### Part 1: Discrete Random Variables and Distributions
**Question 1:** Probability exactly 5 out of 100 bulbs are defective (Binomial distribution).
- Parameters: $n=100$, $p=0.03$, $k=5$.
- Formula: $$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
- Calculation: $$P(X=5) = \binom{100}{5} (0.03)^5 (0.97)^{95}$$
**Question 2:** Probability fewer than 3 bulbs defective.
- Calculate $P(X<3) = P(X=0) + P(X=1) + P(X=2)$ using the binomial formula.
**Question 3:** Probability first defective bulb appears on 4th inspection (Geometric distribution).
- $p=0.03$, $k=4$.
- Formula: $$P(X=k) = (1-p)^{k-1} p$$
- Calculation: $$P(X=4) = (0.97)^3 \times 0.03$$
**Question 4:** Probability of selecting 3 defective bulbs in a sub-sample of 10 from 100 bulbs with 10 defective (Hypergeometric distribution).
- Population size $N=100$, defective $K=10$, sample size $n=10$, successes $k=3$.
- Formula: $$P(X=k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$
**Question 5:** Probability of exactly 5 defects in an hour given average rate 3/hour (Poisson distribution).
- $\\lambda=3$, $k=5$.
- Formula: $$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$
---
### Part 2: Continuous Random Variables and Distributions
**Question 1:** Probability bulb lasts longer than 1500 hours (Normal distribution).
- Mean $\mu=1200$, SD $\sigma=200$.
- Calculate $P(X>1500) = 1 - P(X \leq 1500)$.
- Convert to z-score: $$z = \frac{1500 - 1200}{200} = 1.5$$
- Use standard normal table: $P(Z>1.5)$.
**Question 2:** Find lifetime at which 5% bulbs fail.
- Find $x$ such that $P(X \leq x) = 0.05$.
- Find $z$ for 5th percentile: $z \approx -1.645$.
- Calculate: $$x = \mu + z \sigma = 1200 + (-1.645)(200) = 871$$ hours.
**Question 3:** Convert raw score 1500 hours to z-score.
- $$z = \frac{1500 - 1200}{200} = 1.5$$
- Interpretation: 1500 hours is 1.5 standard deviations above the mean.
**Question 4:** Normal approximation to binomial for at least 10 defective bulbs.
- $n=100$, $p=0.03$, mean $\mu = np = 3$, SD $\sigma = \sqrt{np(1-p)} = \sqrt{3 \times 0.97} \approx 1.705$.
- Use continuity correction: $P(X \geq 10) \approx P(Y > 9.5)$.
- Convert to z: $$z = \frac{9.5 - 3}{1.705} \approx 3.80$$.
- Probability is $P(Z > 3.80)$, very small.
**Question 5:** Probability next defect occurs within 20 minutes (Exponential distribution).
- Mean time $\theta=30$ minutes, rate $\lambda = \frac{1}{30}$.
- Formula: $$P(T \leq t) = 1 - e^{-\lambda t}$$
- Calculation: $$P(T \leq 20) = 1 - e^{-\frac{20}{30}} = 1 - e^{-0.6667} \approx 0.487$$.
---
### Part 3: Central Limit Theorem and Hypothesis Testing
**Question 1:** Standard deviation of sample mean for samples of size 36.
- Population SD $\sigma=200$.
- Sample size $n=36$.
- Standard error: $$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{200}{6} = 33.33$$ hours.
**Question 2:** Probability average lifespan of sample of 36 bulbs is less than 1150 hours.
- Mean $\mu=1200$, SE $33.33$.
- Calculate $P(\bar{X} < 1150)$.
- Convert to z: $$z = \frac{1150 - 1200}{33.33} = -1.5$$.
- Probability: $P(Z < -1.5)$.
**Question 3:** Hypothesis test for claim less than 4% defective at 5% significance.
- Null hypothesis $H_0: p = 0.04$, alternative $H_a: p < 0.04$.
- Sample proportion $\hat{p} = \frac{5}{100} = 0.05$ (assuming 5 defective found).
- Standard error: $$SE = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.04 \times 0.96}{100}} = 0.0196$$.
- Test statistic: $$z = \frac{\hat{p} - p}{SE} = \frac{0.05 - 0.04}{0.0196} = 0.51$$.
- Since $z=0.51$ is not less than critical value $-1.645$, fail to reject $H_0$.
**Question 4:** Standard error with finite population correction (FPC).
- Population $N=10000$, sample $n=100$, SD $\sigma=200$.
- FPC: $$SE = \frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} = 20 \times \sqrt{\frac{9900}{9999}} \approx 19.9$$ hours.
---
**Final answers:**
- Binomial exact 5 defective: $P(X=5) = \binom{100}{5} (0.03)^5 (0.97)^{95}$.
- Binomial fewer than 3 defective: sum of $P(X=0), P(X=1), P(X=2)$.
- Geometric first defective on 4th: $(0.97)^3 \times 0.03$.
- Hypergeometric 3 defective in 10: $\frac{\binom{10}{3} \binom{90}{7}}{\binom{100}{10}}$.
- Poisson exactly 5 defects: $\frac{e^{-3} 3^5}{5!}$.
- Normal $P(X>1500) = P(Z>1.5)$.
- 5% failure lifetime: 871 hours.
- Z-score for 1500 hours: 1.5.
- Normal approx binomial $P(X \geq 10) \approx P(Z>3.8)$.
- Exponential $P(T \leq 20) \approx 0.487$.
- CLT SE for n=36: 33.33 hours.
- $P(\bar{X} < 1150) = P(Z < -1.5)$.
- Hypothesis test: fail to reject $H_0$.
- FPC SE: approx 19.9 hours.