Proportion Test
1. **State the problem:** Dmitry suspects the true proportion of odd numbers rolled is different from 0.5.
2. **Define hypotheses:**
- Null hypothesis: $H_0: p = 0.5$
- Alternative hypothesis: $H_a: p \neq 0.5$ (two-tailed test)
3. **Gather data:**
- Number of rolls, $n = 40$
- Number of odd outcomes, $x = 14$
4. **Calculate sample proportion:**
$$\hat{p} = \frac{x}{n} = \frac{14}{40} = 0.35$$
5. **Calculate test statistic $z$:**
Under $H_0$, the standard error is
$$SE = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{0.5 \times 0.5}{40}} = \sqrt{\frac{0.25}{40}} = \sqrt{0.00625} = 0.07906$$
The test statistic is
$$z = \frac{\hat{p} - p_0}{SE} = \frac{0.35 - 0.5}{0.07906} = \frac{-0.15}{0.07906} \approx -1.897$$
6. **Find the p-value:**
Since the test is two-tailed, the p-value is
$$p = 2 \times P(Z \leq -1.897)$$
Consulting standard normal tables or Excel's NORMSDIST:
$$p \approx 2 \times 0.0289 = 0.0578$$
7. **Conclusion:**
At significance level 0.05, $p = 0.0578 > 0.05$, so we do not reject $H_0$. There is not enough evidence to conclude the true proportion of odd numbers is different from 0.5.
**Final answers:**
Test statistic $z = -1.897$
$p$-value $= 0.058$