Poisson Test 7172E4
1. **Problem Statement:**
We have data on the number of car accidents per week over 80 weeks with frequencies for 0, 1, 2, and 3 accidents. We want to test if this data follows a Poisson distribution at a significance level of 0.01.
2. **Poisson Distribution Formula:**
The probability mass function (pmf) of a Poisson distribution is:
$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$
where $\lambda$ is the average rate (mean) of occurrences.
3. **Calculate the sample mean $\lambda$:**
$$\lambda = \frac{\sum (x_i \times f_i)}{n} = \frac{0\times3 + 1\times22 + 2\times33 + 3\times16}{80}$$
Calculate numerator:
$$0 + 22 + 66 + 48 = 136$$
So,
$$\lambda = \frac{136}{80} = 1.7$$
4. **Calculate expected frequencies using Poisson probabilities:**
For each $k=0,1,2,3$:
$$P(k) = \frac{e^{-1.7} 1.7^k}{k!}$$
Calculate $e^{-1.7} \approx 0.1827$.
- For $k=0$:
$$P(0) = 0.1827 \times \frac{1.7^0}{0!} = 0.1827$$
Expected frequency:
$$E_0 = 80 \times 0.1827 = 14.62$$
- For $k=1$:
$$P(1) = 0.1827 \times \frac{1.7^1}{1} = 0.1827 \times 1.7 = 0.3106$$
Expected frequency:
$$E_1 = 80 \times 0.3106 = 24.85$$
- For $k=2$:
$$P(2) = 0.1827 \times \frac{1.7^2}{2} = 0.1827 \times \frac{2.89}{2} = 0.1827 \times 1.445 = 0.2640$$
Expected frequency:
$$E_2 = 80 \times 0.2640 = 21.12$$
- For $k=3$:
$$P(3) = 0.1827 \times \frac{1.7^3}{6} = 0.1827 \times \frac{4.913}{6} = 0.1827 \times 0.8188 = 0.1495$$
Expected frequency:
$$E_3 = 80 \times 0.1495 = 11.96$$
5. **Perform Chi-square goodness-of-fit test:**
$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$
Where $O_i$ are observed frequencies and $E_i$ expected frequencies.
Calculate each term:
- For $k=0$:
$$\frac{(3 - 14.62)^2}{14.62} = \frac{(-11.62)^2}{14.62} = \frac{135.05}{14.62} = 9.24$$
- For $k=1$:
$$\frac{(22 - 24.85)^2}{24.85} = \frac{(-2.85)^2}{24.85} = \frac{8.12}{24.85} = 0.33$$
- For $k=2$:
$$\frac{(33 - 21.12)^2}{21.12} = \frac{11.88^2}{21.12} = \frac{141.14}{21.12} = 6.68$$
- For $k=3$:
$$\frac{(16 - 11.96)^2}{11.96} = \frac{4.04^2}{11.96} = \frac{16.32}{11.96} = 1.36$$
Sum:
$$\chi^2 = 9.24 + 0.33 + 6.68 + 1.36 = 17.61$$
6. **Degrees of freedom:**
$$df = \text{number of categories} - 1 - \text{number of estimated parameters} = 4 - 1 - 1 = 2$$
7. **Critical value at $\alpha=0.01$ and $df=2$:**
From chi-square tables, critical value $\approx 9.21$.
8. **Decision:**
Since $17.61 > 9.21$, we reject the null hypothesis.
**Conclusion:**
At the 0.01 significance level, the data does not follow a Poisson distribution.