Poisson Goodness C728Cd
1. **Problem Statement:**
Test whether the number of arrivals per unit time at the hospital follows a Poisson distribution using the chi-square goodness of fit test at 5% significance level.
2. **Given Data:**
Number of arrivals (x): 0, 1, 2, 3, 4, 5, 6, 7
Observed frequency (O): 10, 30, 40, 50, 35, 20, 10, 5
3. **Step 1: Calculate the sample mean \( \bar{x} \) (estimate of Poisson parameter \( \lambda \))**
$$\bar{x} = \frac{\sum x_i O_i}{\sum O_i} = \frac{0\times10 + 1\times30 + 2\times40 + 3\times50 + 4\times35 + 5\times20 + 6\times10 + 7\times5}{10 + 30 + 40 + 50 + 35 + 20 + 10 + 5}$$
Calculate numerator:
$$0 + 30 + 80 + 150 + 140 + 100 + 60 + 35 = 595$$
Calculate denominator:
$$10 + 30 + 40 + 50 + 35 + 20 + 10 + 5 = 200$$
So,
$$\bar{x} = \frac{595}{200} = 2.975$$
4. **Step 2: Calculate expected frequencies \( E_i \) using Poisson probabilities:**
Poisson probability mass function:
$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
Calculate \( e^{-\lambda} = e^{-2.975} \approx 0.0509 \)
Calculate probabilities for each \( x \):
- \( P(0) = 0.0509 \times \frac{2.975^0}{0!} = 0.0509 \)
- \( P(1) = 0.0509 \times \frac{2.975^1}{1!} = 0.1514 \)
- \( P(2) = 0.0509 \times \frac{2.975^2}{2!} = 0.2253 \)
- \( P(3) = 0.0509 \times \frac{2.975^3}{6} = 0.2233 \)
- \( P(4) = 0.0509 \times \frac{2.975^4}{24} = 0.1660 \)
- \( P(5) = 0.0509 \times \frac{2.975^5}{120} = 0.0987 \)
- \( P(6) = 0.0509 \times \frac{2.975^6}{720} = 0.0490 \)
- \( P(7) = 0.0509 \times \frac{2.975^7}{5040} = 0.0208 \)
Calculate expected frequencies:
$$E_i = P(x_i) \times 200$$
- \( E_0 = 0.0509 \times 200 = 10.18 \)
- \( E_1 = 0.1514 \times 200 = 30.28 \)
- \( E_2 = 0.2253 \times 200 = 45.06 \)
- \( E_3 = 0.2233 \times 200 = 44.66 \)
- \( E_4 = 0.1660 \times 200 = 33.20 \)
- \( E_5 = 0.0987 \times 200 = 19.74 \)
- \( E_6 = 0.0490 \times 200 = 9.80 \)
- \( E_7 = 0.0208 \times 200 = 4.16 \)
5. **Step 3: Combine categories if expected frequencies are less than 5 (none here are less than 5, so no combination needed).**
6. **Step 4: Calculate chi-square test statistic:**
$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$
Calculate each term:
- \( \frac{(10 - 10.18)^2}{10.18} = 0.0032 \)
- \( \frac{(30 - 30.28)^2}{30.28} = 0.0026 \)
- \( \frac{(40 - 45.06)^2}{45.06} = 0.566 \)
- \( \frac{(50 - 44.66)^2}{44.66} = 0.642 \)
- \( \frac{(35 - 33.20)^2}{33.20} = 0.097 \)
- \( \frac{(20 - 19.74)^2}{19.74} = 0.0033 \)
- \( \frac{(10 - 9.80)^2}{9.80} = 0.0041 \)
- \( \frac{(5 - 4.16)^2}{4.16} = 0.171 \)
Sum:
$$\chi^2 = 0.0032 + 0.0026 + 0.566 + 0.642 + 0.097 + 0.0033 + 0.0041 + 0.171 = 1.4892$$
7. **Step 5: Determine degrees of freedom:**
$$df = k - 1 - m = 8 - 1 - 1 = 6$$
where \(k=8\) categories and \(m=1\) estimated parameter (\(\lambda\)).
8. **Step 6: Find critical value from chi-square table at \(\alpha=0.05\) and \(df=6\):**
$$\chi^2_{critical} = 12.592$$
9. **Step 7: Conclusion:**
Since \(\chi^2 = 1.4892 < 12.592\), we fail to reject the null hypothesis.
**Interpretation:** There is no significant evidence at 5% level to reject the claim that the arrivals follow a Poisson distribution.