Poisson Goodness 018Afa
1. **Problem Statement:**
Test whether the number of arrivals per unit time at the hospital follows a Poisson distribution using the given observed frequencies and a 5% level of significance.
2. **Formula and Important Rules:**
The Poisson probability mass function is given by:
$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$
where $\lambda$ is the mean number of arrivals per unit time.
The chi-square goodness of fit test statistic is:
$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$
where $O_i$ is the observed frequency and $E_i$ is the expected frequency.
We reject the null hypothesis if $\chi^2$ calculated $>$ $\chi^2$ critical value at $\alpha=0.05$ with degrees of freedom $df = \text{number of categories} - 1 - \text{parameters estimated}$.
3. **Calculate the sample mean $\lambda$:**
$$\lambda = \frac{\sum (x_i \times f_i)}{\sum f_i}$$
where $x_i$ is the number of arrivals and $f_i$ is the observed frequency.
Calculate total frequency:
$$N = 10 + 30 + 40 + 50 + 35 + 20 + 10 + 5 = 200$$
Calculate $\sum x_i f_i$:
$$0\times10 + 1\times30 + 2\times40 + 3\times50 + 4\times35 + 5\times20 + 6\times10 + 7\times5 = 0 + 30 + 80 + 150 + 140 + 100 + 60 + 35 = 595$$
So,
$$\lambda = \frac{595}{200} = 2.975$$
4. **Calculate expected frequencies $E_i$ using Poisson probabilities:**
Calculate $P(X=k)$ for $k=0$ to $7$:
$$P(X=k) = \frac{e^{-2.975} (2.975)^k}{k!}$$
Calculate $e^{-2.975} \approx 0.0509$
Calculate each $P(X=k)$:
- $P(0) = 0.0509 \times \frac{2.975^0}{0!} = 0.0509$
- $P(1) = 0.0509 \times \frac{2.975^1}{1} = 0.1514$
- $P(2) = 0.0509 \times \frac{2.975^2}{2} = 0.2253$
- $P(3) = 0.0509 \times \frac{2.975^3}{6} = 0.2233$
- $P(4) = 0.0509 \times \frac{2.975^4}{24} = 0.1660$
- $P(5) = 0.0509 \times \frac{2.975^5}{120} = 0.0987$
- $P(6) = 0.0509 \times \frac{2.975^6}{720} = 0.0489$
- $P(7) = 0.0509 \times \frac{2.975^7}{5040} = 0.0208$
Calculate expected frequencies $E_i = N \times P(X=k)$:
- $E_0 = 200 \times 0.0509 = 10.18$
- $E_1 = 200 \times 0.1514 = 30.28$
- $E_2 = 200 \times 0.2253 = 45.06$
- $E_3 = 200 \times 0.2233 = 44.66$
- $E_4 = 200 \times 0.1660 = 33.20$
- $E_5 = 200 \times 0.0987 = 19.74$
- $E_6 = 200 \times 0.0489 = 9.78$
- $E_7 = 200 \times 0.0208 = 4.16$
5. **Calculate the chi-square test statistic:**
$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$
Calculate each term:
- $\frac{(10 - 10.18)^2}{10.18} = 0.0032$
- $\frac{(30 - 30.28)^2}{30.28} = 0.0026$
- $\frac{(40 - 45.06)^2}{45.06} = 0.5673$
- $\frac{(50 - 44.66)^2}{44.66} = 0.6423$
- $\frac{(35 - 33.20)^2}{33.20} = 0.0976$
- $\frac{(20 - 19.74)^2}{19.74} = 0.0033$
- $\frac{(10 - 9.78)^2}{9.78} = 0.0050$
- $\frac{(5 - 4.16)^2}{4.16} = 0.1712$
Sum:
$$\chi^2 = 0.0032 + 0.0026 + 0.5673 + 0.6423 + 0.0976 + 0.0033 + 0.0050 + 0.1712 = 1.4925$$
6. **Degrees of freedom:**
Number of categories = 8
Parameters estimated = 1 (mean $\lambda$)
$$df = 8 - 1 - 1 = 6$$
7. **Critical value:**
From chi-square table at $\alpha=0.05$ and $df=6$, critical value $\chi^2_{0.05,6} = 12.592$
8. **Decision:**
Since $\chi^2_{calculated} = 1.4925 < 12.592 = \chi^2_{critical}$, we fail to reject the null hypothesis.
9. **Conclusion:**
There is not enough evidence at the 5% significance level to reject the claim that the arrivals follow a Poisson distribution.