Multiple Regression 871E1A
1. **Problem Statement:**
We want to fit a multiple linear regression model to forecast Quantity Demand ($Q$) based on Price ($P$) and Income ($I$).
2. **Model Form:**
The multiple linear regression equation is:
$$Q = \beta_0 + \beta_1 P + \beta_2 I + \epsilon$$
where $\beta_0$ is the intercept, $\beta_1$ and $\beta_2$ are coefficients for Price and Income respectively, and $\epsilon$ is the error term.
3. **Data:**
| Quantity Demand (Q) | Price (P) | Income (I) |
|---------------------|-----------|------------|
| 10 | 2 | 8 |
| 8 | 4 | 6 |
| 10 | 3 | 7 |
| 9 | 4 | 6 |
| 7 | 5 | 5 |
| 6 | 5 | 4 |
| 4 | 6 | 2 |
| 8 | 3 | 6 |
| 10 | 3 | 9 |
| 12 | 2 | 10 |
4. **Calculate means:**
$$\bar{Q} = \frac{10+8+10+9+7+6+4+8+10+12}{10} = 8.4$$
$$\bar{P} = \frac{2+4+3+4+5+5+6+3+3+2}{10} = 3.7$$
$$\bar{I} = \frac{8+6+7+6+5+4+2+6+9+10}{10} = 6.3$$
5. **Calculate sums of squares and cross products:**
$$SS_{PP} = \sum (P_i - \bar{P})^2 = 17.1$$
$$SS_{II} = \sum (I_i - \bar{I})^2 = 38.1$$
$$SS_{PI} = \sum (P_i - \bar{P})(I_i - \bar{I}) = -15.1$$
$$SS_{PQ} = \sum (P_i - \bar{P})(Q_i - \bar{Q}) = -19.3$$
$$SS_{IQ} = \sum (I_i - \bar{I})(Q_i - \bar{Q}) = 33.7$$
6. **Calculate coefficients $\beta_1$ and $\beta_2$ using matrix form:**
$$\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} SS_{PP} & SS_{PI} \\ SS_{PI} & SS_{II} \end{bmatrix}^{-1} \begin{bmatrix} SS_{PQ} \\ SS_{IQ} \end{bmatrix}$$
Calculate determinant:
$$D = SS_{PP} \times SS_{II} - (SS_{PI})^2 = 17.1 \times 38.1 - (-15.1)^2 = 651.51 - 228.01 = 423.5$$
Inverse matrix:
$$\frac{1}{D} \begin{bmatrix} SS_{II} & -SS_{PI} \\ -SS_{PI} & SS_{PP} \end{bmatrix} = \frac{1}{423.5} \begin{bmatrix} 38.1 & 15.1 \\ 15.1 & 17.1 \end{bmatrix}$$
Multiply inverse by vector:
$$\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \frac{1}{423.5} \begin{bmatrix} 38.1 & 15.1 \\ 15.1 & 17.1 \end{bmatrix} \begin{bmatrix} -19.3 \\ 33.7 \end{bmatrix} = \frac{1}{423.5} \begin{bmatrix} 38.1 \times (-19.3) + 15.1 \times 33.7 \\ 15.1 \times (-19.3) + 17.1 \times 33.7 \end{bmatrix}$$
Calculate numerator:
$$\beta_1: 38.1 \times (-19.3) + 15.1 \times 33.7 = -735.33 + 509.87 = -225.46$$
$$\beta_2: 15.1 \times (-19.3) + 17.1 \times 33.7 = -291.43 + 576.27 = 284.84$$
Divide by determinant:
$$\beta_1 = \frac{-225.46}{423.5} = -0.532$$
$$\beta_2 = \frac{284.84}{423.5} = 0.673$$
7. **Calculate intercept $\beta_0$:**
$$\beta_0 = \bar{Q} - \beta_1 \bar{P} - \beta_2 \bar{I} = 8.4 - (-0.532)(3.7) - 0.673(6.3) = 8.4 + 1.968 - 4.239 = 6.129$$
8. **Final regression equation:**
$$Q = 6.129 - 0.532 P + 0.673 I$$
9. **Forecast demand when $P=8$ and $I=15$:**
$$Q = 6.129 - 0.532 \times 8 + 0.673 \times 15 = 6.129 - 4.256 + 10.095 = 9.968$$
**Answer:** The forecasted Quantity Demand is approximately **9.97 thousand units** when Price is 8 and Income is 15.