Mle Exponential
1. **Problem statement:** Given a random sample $X_1, X_2, \ldots, X_n$ from the probability density function (pdf)
$$f(x;\theta) = \theta e^{-\theta x}, \quad x > 0, \theta > 0,$$
find:
(a) the maximum likelihood estimator (MLE) of $\theta$,
(b) the expectation $\mu = E[X]$,
(c) whether the MLE $\hat{\theta}$ is biased or unbiased,
(d) the MLE of $\mu$,
(e) compute $\hat{\mu}$ given the sample $2.4, 5.3, 4.8, 3.6, 7.4$.
2. **(a) Find the MLE of $\theta$: **
The likelihood function for the sample is
$$L(\theta) = \prod_{i=1}^n \theta e^{-\theta x_i} = \theta^n e^{-\theta \sum_{i=1}^n x_i}.$$
The log-likelihood is
$$\ell(\theta) = n \ln \theta - \theta \sum_{i=1}^n x_i.$$
Taking derivative and setting to zero:
$$\frac{d\ell}{d\theta} = \frac{n}{\theta} - \sum_{i=1}^n x_i = 0 \implies \hat{\theta} = \frac{n}{\sum_{i=1}^n x_i}.$$
3. **(b) Find the expectation $\mu = E[X]$: **
For the exponential distribution,
$$E[X] = \frac{1}{\theta}.$$
4. **(c) Is $\hat{\theta}$ biased or unbiased?**
Since $\hat{\theta} = \frac{n}{\sum X_i}$ and $\sum X_i$ is Gamma distributed,
$$E[\hat{\theta}] = E\left[\frac{n}{\sum X_i}\right] \neq \theta,$$
so $\hat{\theta}$ is a biased estimator.
5. **(d) Find the MLE of $\mu = E[X]$: **
Since $\mu = \frac{1}{\theta}$, the MLE of $\mu$ is
$$\hat{\mu} = \frac{1}{\hat{\theta}} = \frac{\sum_{i=1}^n x_i}{n} = \bar{X}.$$
6. **(e) Compute $\hat{\mu}$ for the sample $2.4, 5.3, 4.8, 3.6, 7.4$: **
Calculate the sample mean:
$$\bar{X} = \frac{2.4 + 5.3 + 4.8 + 3.6 + 7.4}{5} = \frac{23.5}{5} = 4.7.$$
**Final answers:**
- MLE of $\theta$: $\hat{\theta} = \frac{n}{\sum X_i}$
- Expectation: $\mu = \frac{1}{\theta}$
- $\hat{\theta}$ is biased
- MLE of $\mu$: $\hat{\mu} = \bar{X}$
- Computed $\hat{\mu}$ for sample: $4.7$