Measurement Error
1. **Problem statement:** We have 5 measurements of a ball bearing diameter: 8.1, 9.1, 8.9, 8.9, 9.1 mm.
The true diameter is 9.0 mm.
(a) Calculate the unbiased estimates of the mean and variance of the measurement error.
2. **Calculate measurement errors:**
The measurement error for each measurement is $\text{error}_i = \text{measurement}_i - 9.0$.
Errors: $8.1 - 9.0 = -0.9$, $9.1 - 9.0 = 0.1$, $8.9 - 9.0 = -0.1$, $8.9 - 9.0 = -0.1$, $9.1 - 9.0 = 0.1$.
3. **Calculate the sample mean of errors:**
$$\bar{e} = \frac{-0.9 + 0.1 - 0.1 - 0.1 + 0.1}{5} = \frac{-0.9}{5} = -0.18$$
4. **Calculate the unbiased sample variance of errors:**
Use formula:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (e_i - \bar{e})^2$$
Calculate each squared deviation:
$(-0.9 + 0.18)^2 = (-0.72)^2 = 0.5184$
$(0.1 + 0.18)^2 = (0.28)^2 = 0.0784$
$(-0.1 + 0.18)^2 = (0.08)^2 = 0.0064$
$(-0.1 + 0.18)^2 = 0.0064$
$(0.1 + 0.18)^2 = 0.0784$
Sum: $0.5184 + 0.0784 + 0.0064 + 0.0064 + 0.0784 = 0.688$
Divide by $n-1=4$:
$$s^2 = \frac{0.688}{4} = 0.172$$
5. **Answer for (a):**
Unbiased estimate of mean error: $-0.18$ mm
Unbiased estimate of variance of error: $0.172$ mm$^2$
6. **(b) Find 90% confidence interval for mean error assuming normality:**
Sample size $n=5$, sample mean $\bar{e} = -0.18$, sample standard deviation $s = \sqrt{0.172} \approx 0.414$
Degrees of freedom $df = n-1 = 4$.
From t-distribution table, $t_{0.05,4} \approx 2.132$ (two-tailed 90% CI).
Margin of error:
$$ME = t_{0.05,4} \times \frac{s}{\sqrt{n}} = 2.132 \times \frac{0.414}{\sqrt{5}} = 2.132 \times 0.185 = 0.394$$
Confidence interval:
$$\bar{e} \pm ME = -0.18 \pm 0.394 = (-0.574, 0.214)$$
7. **Answer for (b):**
The 90% confidence interval for the mean measurement error is from $-0.574$ mm to $0.214$ mm.