Mean Variance E74873
1. **State the problem:** We are given a discrete random variable $X$ with values and their probabilities $P(X)$. We need to find the Mean ($\mu$), Variance ($\sigma^2$), and Standard Deviation ($\sigma$).
2. **Recall formulas:**
- Mean: $\mu = \sum X \cdot P(X)$
- Variance: $\sigma^2 = \sum (X - \mu)^2 \cdot P(X)$
- Standard Deviation: $\sigma = \sqrt{\sigma^2}$
3. **Calculate Mean:**
Calculate $X \cdot P(X)$ for each $X$:
- $1 \cdot 0.15 = 0.15$
- $2 \cdot 0.50 = 1.00$
- $3 \cdot 0.90 = 2.70$
- $4 \cdot 0.60 = 2.40$
- $5 \cdot 0.50 = 2.50$
- $6 \cdot 0.30 = 1.80$
Sum these values:
$$\mu = 0.15 + 1.00 + 2.70 + 2.40 + 2.50 + 1.80 = 10.55$$
4. **Calculate Variance:**
First find $X - \mu$ for each $X$:
- $1 - 10.55 = -9.55$
- $2 - 10.55 = -8.55$
- $3 - 10.55 = -7.55$
- $4 - 10.55 = -6.55$
- $5 - 10.55 = -5.55$
- $6 - 10.55 = -4.55$
Square each difference:
- $(-9.55)^2 = 91.2025$
- $(-8.55)^2 = 73.1025$
- $(-7.55)^2 = 57.0025$
- $(-6.55)^2 = 42.9025$
- $(-5.55)^2 = 30.8025$
- $(-4.55)^2 = 20.7025$
Multiply each squared difference by $P(X)$:
- $91.2025 \times 0.15 = 13.680375$
- $73.1025 \times 0.50 = 36.55125$
- $57.0025 \times 0.90 = 51.30225$
- $42.9025 \times 0.60 = 25.7415$
- $30.8025 \times 0.50 = 15.40125$
- $20.7025 \times 0.30 = 6.21075$
Sum these values:
$$\sigma^2 = 13.680375 + 36.55125 + 51.30225 + 25.7415 + 15.40125 + 6.21075 = 148.887375$$
5. **Calculate Standard Deviation:**
$$\sigma = \sqrt{148.887375} \approx 12.20$$
**Final answers:**
- Mean ($\mu$) = 10.55
- Variance ($\sigma^2$) = 148.89
- Standard Deviation ($\sigma$) = 12.20
Note: The probabilities given do not sum to 1, which is unusual for a probability distribution, but we followed the instructions as given.