Mean Variance 769Db7
1. **State the problem:** We are given a discrete probability distribution of the number of modules John can finish in a day, with values of $x$ and their probabilities $P(x)$. We need to find the mean ($\mu$), variance ($\sigma^2$), and standard deviation ($\sigma$) of this distribution. Then, we will assess if John's claim of finishing 5 modules in a day is believable.
2. **Recall formulas:**
- Mean (expected value): $$\mu = \sum x P(x)$$
- Variance: $$\sigma^2 = \sum (x - \mu)^2 P(x)$$
- Standard deviation: $$\sigma = \sqrt{\sigma^2}$$
3. **Calculate the mean:**
Calculate $x \cdot P(x)$ for each $x$:
- $1 \times 0.20 = 0.20$
- $2 \times 0.35 = 0.70$
- $3 \times 0.10 = 0.30$
- $4 \times 0.15 = 0.60$
- $5 \times 0.10 = 0.50$
- $6 \times 0.10 = 0.60$
Sum these values:
$$\mu = 0.20 + 0.70 + 0.30 + 0.60 + 0.50 + 0.60 = 2.90$$
4. **Calculate variance:**
First, find $x - \mu$ for each $x$:
- $1 - 2.90 = -1.90$
- $2 - 2.90 = -0.90$
- $3 - 2.90 = 0.10$
- $4 - 2.90 = 1.10$
- $5 - 2.90 = 2.10$
- $6 - 2.90 = 3.10$
Square these differences:
- $(-1.90)^2 = 3.61$
- $(-0.90)^2 = 0.81$
- $(0.10)^2 = 0.01$
- $(1.10)^2 = 1.21$
- $(2.10)^2 = 4.41$
- $(3.10)^2 = 9.61$
Multiply each squared difference by its probability:
- $3.61 \times 0.20 = 0.722$
- $0.81 \times 0.35 = 0.2835$
- $0.01 \times 0.10 = 0.001$
- $1.21 \times 0.15 = 0.1815$
- $4.41 \times 0.10 = 0.441$
- $9.61 \times 0.10 = 0.961$
Sum these values to get variance:
$$\sigma^2 = 0.722 + 0.2835 + 0.001 + 0.1815 + 0.441 + 0.961 = 2.59$$
5. **Calculate standard deviation:**
$$\sigma = \sqrt{2.59} \approx 1.61$$
6. **Interpretation:**
The mean number of modules John can finish in a day is approximately 2.90, with a standard deviation of about 1.61. John's claim of finishing 5 modules in a day is above the mean by about $5 - 2.90 = 2.10$ modules, which is roughly $\frac{2.10}{1.61} \approx 1.3$ standard deviations above the mean. This is possible but somewhat above average, so it may not be typical but not impossible.
**Final answers:**
- Mean $\mu = 2.90$
- Variance $\sigma^2 = 2.59$
- Standard deviation $\sigma = 1.61$