Mean Variance 31036E
1. **State the problem:**
We are given a discrete random variable $X$ with probabilities $P(X)$ and need to find the Mean ($\mu$), Variance ($\sigma^2$), and Standard Deviation ($\sigma$).
2. **Recall formulas:**
- Mean: $$\mu = \sum X \cdot P(X)$$
- Variance: $$\sigma^2 = \sum (X - \mu)^2 \cdot P(X)$$
- Standard Deviation: $$\sigma = \sqrt{\sigma^2}$$
3. **Calculate Mean:**
Given $X = \{1,2,3,4,5,6\}$ and $P(X) = \{0.15, 0.50, 0.90, 0.60, 0.50, 0.30\}$
Calculate $X \cdot P(X)$:
$$1 \times 0.15 = 0.15$$
$$2 \times 0.50 = 1.00$$
$$3 \times 0.90 = 2.70$$
$$4 \times 0.60 = 2.40$$
$$5 \times 0.50 = 2.50$$
$$6 \times 0.30 = 1.80$$
Sum these:
$$\mu = 0.15 + 1.00 + 2.70 + 2.40 + 2.50 + 1.80 = 10.55$$
4. **Calculate Variance:**
Calculate $X - \mu$:
$$1 - 10.55 = -9.55$$
$$2 - 10.55 = -8.55$$
$$3 - 10.55 = -7.55$$
$$4 - 10.55 = -6.55$$
$$5 - 10.55 = -5.55$$
$$6 - 10.55 = -4.55$$
Calculate $(X - \mu)^2$:
$$(-9.55)^2 = 91.2025$$
$$(-8.55)^2 = 73.1025$$
$$(-7.55)^2 = 57.0025$$
$$(-6.55)^2 = 42.9025$$
$$(-5.55)^2 = 30.8025$$
$$(-4.55)^2 = 20.7025$$
Calculate $(X - \mu)^2 \cdot P(X)$:
$$91.2025 \times 0.15 = 13.680375$$
$$73.1025 \times 0.50 = 36.55125$$
$$57.0025 \times 0.90 = 51.30225$$
$$42.9025 \times 0.60 = 25.7415$$
$$30.8025 \times 0.50 = 15.40125$$
$$20.7025 \times 0.30 = 6.21075$$
Sum these:
$$\sigma^2 = 13.680375 + 36.55125 + 51.30225 + 25.7415 + 15.40125 + 6.21075 = 148.887375$$
5. **Calculate Standard Deviation:**
$$\sigma = \sqrt{148.887375} \approx 12.204$$
**Final answers:**
- Mean ($\mu$) = 10.55
- Variance ($\sigma^2$) = 148.89
- Standard Deviation ($\sigma$) = 12.20
Note: The probabilities given do not sum to 1, which is unusual for a probability distribution, but calculations proceed as requested.