Mean Variance 0Bceb9
1. **State the problem:** We have a probability distribution with values of $x$ and their probabilities $P(X)$. We need to complete the table, find the mean ($\mu$), variance ($\sigma^2$), and standard deviation ($\sigma$), then interpret the results.
2. **Recall formulas:**
- Mean (expected value): $$\mu = \sum x_i P(x_i)$$
- Variance: $$\sigma^2 = \sum (x_i - \mu)^2 P(x_i)$$
- Standard deviation: $$\sigma = \sqrt{\sigma^2}$$
3. **Given data:**
| $x$ | $P(X)$ |
|-----|--------|
| 1 | 0.2 |
| 4 | 0.4 |
| 5 | 0.2 |
| 7 | 0.2 |
4. **Calculate $X \times P(X)$:**
- $1 \times 0.2 = 0.2$
- $4 \times 0.4 = 1.6$
- $5 \times 0.2 = 1.0$
- $7 \times 0.2 = 1.4$
Sum these to find the mean:
$$\mu = 0.2 + 1.6 + 1.0 + 1.4 = 4.2$$
5. **Calculate $X - \mu$ for each $x$:**
- $1 - 4.2 = -3.2$
- $4 - 4.2 = -0.2$
- $5 - 4.2 = 0.8$
- $7 - 4.2 = 2.8$
6. **Calculate $(X - \mu)^2$ for each $x$:**
- $(-3.2)^2 = 10.24$
- $(-0.2)^2 = 0.04$
- $(0.8)^2 = 0.64$
- $(2.8)^2 = 7.84$
7. **Calculate $(X - \mu)^2 \times P(X)$:**
- $10.24 \times 0.2 = 2.048$
- $0.04 \times 0.4 = 0.016$
- $0.64 \times 0.2 = 0.128$
- $7.84 \times 0.2 = 1.568$
Sum these to find variance:
$$\sigma^2 = 2.048 + 0.016 + 0.128 + 1.568 = 3.76$$
8. **Calculate standard deviation:**
$$\sigma = \sqrt{3.76} \approx 1.94$$
9. **Interpretation:**
- The mean $\mu = 4.2$ represents the expected value of $X$.
- The variance $\sigma^2 = 3.76$ measures the spread of the distribution.
- The standard deviation $\sigma = 1.94$ shows the average distance of values from the mean.
- Since the standard deviation is less than half the mean, the data points are moderately spread around the mean.
**Final completed table:**
| $x$ | $P(X)$ | $X \times P(X)$ | $X - \mu$ | $(X - \mu)^2$ | $(X - \mu)^2 \times P(X)$ |
|-----|--------|-----------------|-----------|---------------|----------------------------|
| 1 | 0.2 | 0.2 | -3.2 | 10.24 | 2.048 |
| 4 | 0.4 | 1.6 | -0.2 | 0.04 | 0.016 |
| 5 | 0.2 | 1.0 | 0.8 | 0.64 | 0.128 |
| 7 | 0.2 | 1.4 | 2.8 | 7.84 | 1.568 |
$$\mu = 4.2, \quad \sigma^2 = 3.76, \quad \sigma = 1.94$$