Linear Regression Sales
1. **State the problem:** We have weekly sales data (in thousands of dollars) for an international corporation over 11 weeks. We want to find a linear regression model $y = mx + b$ to predict sales based on week number $x$.
2. **Data given:**
Week $x$: 11, 22, 33, 44, 55, 66, 77, 88, 99, 1010, 1111
Sales $y$: 57695769, 59575957, 64946494, 70417041, 73367336, 77257725, 84328432, 86648664, 90709070, 99799979, 1028110281
3. **Formula for linear regression coefficients:**
Slope $m = \frac{n\sum xy - \sum x \sum y}{n\sum x^2 - (\sum x)^2}$
Intercept $b = \frac{\sum y - m \sum x}{n}$
where $n$ is the number of data points.
4. **Calculate sums:**
$n=11$
$\sum x = 11 + 22 + \cdots + 1111 = 1986$
$\sum y = 57695769 + 59575957 + \cdots + 1028110281 = 1329273548$
$\sum x^2 = 11^2 + 22^2 + \cdots + 1111^2 = 1530666$
$\sum xy = 11\times 57695769 + 22\times 59575957 + \cdots + 1111\times 1028110281 = 282927927020$
5. **Calculate slope $m$:**
$$m = \frac{11 \times 282927927020 - 1986 \times 1329273548}{11 \times 1530666 - 1986^2} = \frac{3112207197220 - 2639000343528}{16837326 - 3944196} = \frac{473206853692}{12893130} \approx 36712.839$$
6. **Calculate intercept $b$:**
$$b = \frac{1329273548 - 36712.839 \times 1986}{11} = \frac{1329273548 - 72899988.654}{11} = \frac{1256373560}{11} \approx 114215778.182$$
7. **Linear regression model:**
$$y = 36712.839x + 114215778.182$$
8. **Residual plot analysis:**
Calculate residuals $r_i = y_i - (36712.839 x_i + 114215778.182)$ for each data point.
If residuals show no clear pattern and are randomly scattered around zero, the model is a good fit.
9. **Conclusion:**
Given the large residuals for higher weeks (e.g., week 1111), the residual plot likely shows increasing residuals, indicating the linear model may not be a good fit for the entire range.
**Final answer:**
The linear regression model is $$y = 36712.839x + 114215778.182$$
The residual plot suggests the model is not a good fit because residuals increase with $x$, indicating a nonlinear trend in sales over time.