Light Bulb Lifetime Eae517
1. **Problem Statement:**
We have a frequency distribution of lifetimes of 500 light bulbs. We need to calculate the mean, standard deviation, construct a percentage ogive to find median, quartile deviation, percentage in a range, and confirm these values by computation. Also, analyze risks and probabilities related to guarantees.
2. **Calculate the Mean:**
The midpoint $x_i$ of each class interval is calculated as the average of the lower and upper bounds.
| Class Interval | Midpoint $x_i$ | Frequency $f_i$ |
|---------------|----------------|----------------|
| 400-499 | 450 | 10 |
| 500-599 | 550 | 16 |
| 600-699 | 650 | 38 |
| 700-799 | 750 | 56 |
| 800-899 | 850 | 63 |
| 900-999 | 950 | 67 |
| 1000-1099 | 1050 | 92 |
| 1100-1199 | 1150 | 68 |
| 1200-1299 | 1250 | 57 |
| 1300-1399 | 1350 | 33 |
Mean formula:
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$$
Calculate $\sum f_i x_i$:
$$10\times450 + 16\times550 + 38\times650 + 56\times750 + 63\times850 + 67\times950 + 92\times1050 + 68\times1150 + 57\times1250 + 33\times1350$$
$$= 4500 + 8800 + 24700 + 42000 + 53550 + 63650 + 96600 + 78200 + 71250 + 44550 = 487800$$
Total frequency $\sum f_i = 500$
Mean:
$$\bar{x} = \frac{487800}{500} = 975.6$$
3. **Calculate the Standard Deviation:**
Use formula:
$$\sigma = \sqrt{\frac{\sum f_i x_i^2}{\sum f_i} - \bar{x}^2}$$
Calculate $\sum f_i x_i^2$:
$$10\times450^2 + 16\times550^2 + 38\times650^2 + 56\times750^2 + 63\times850^2 + 67\times950^2 + 92\times1050^2 + 68\times1150^2 + 57\times1250^2 + 33\times1350^2$$
$$= 10\times202500 + 16\times302500 + 38\times422500 + 56\times562500 + 63\times722500 + 67\times902500 + 92\times1102500 + 68\times1322500 + 57\times1562500 + 33\times1822500$$
$$= 2025000 + 4840000 + 16055000 + 31500000 + 45517500 + 60467500 + 101430000 + 89930000 + 89062500 + 60142500 = 484500000$$
Calculate variance:
$$\frac{484500000}{500} - (975.6)^2 = 969000 - 951792.36 = 17207.64$$
Standard deviation:
$$\sigma = \sqrt{17207.64} \approx 131.2$$
4. **Construct Percentage Ogive and Find Median, Quartile Deviation, Percentage in Range:**
Cumulative frequencies:
| Upper Class Boundary | Cumulative Frequency |
|---------------------|----------------------|
| 500 | 10 |
| 600 | 26 |
| 700 | 64 |
| 800 | 120 |
| 900 | 183 |
| 1000 | 250 |
| 1100 | 342 |
| 1200 | 410 |
| 1300 | 467 |
| 1400 | 500 |
- Median is the value at cumulative frequency $\frac{500}{2} = 250$.
Using linear interpolation in 900-1000 class:
$$L = 900, F = 183, f = 67, n = 250$$
$$\text{Median} = L + \frac{n - F}{f} \times \text{class width} = 900 + \frac{250 - 183}{67} \times 100 = 900 + 0.985 \times 100 = 998.5$$
- Quartiles:
$Q_1$ at $\frac{500}{4} = 125$ lies in 800-900 class:
$$L=800, F=120, f=63$$
$$Q_1 = 800 + \frac{125 - 120}{63} \times 100 = 800 + 7.94 = 807.94$$
$Q_3$ at $\frac{3\times500}{4} = 375$ lies in 1100-1200 class:
$$L=1100, F=342, f=68$$
$$Q_3 = 1100 + \frac{375 - 342}{68} \times 100 = 1100 + 48.53 = 1148.53$$
Quartile deviation:
$$QD = \frac{Q_3 - Q_1}{2} = \frac{1148.53 - 807.94}{2} = 170.3$$
- Percentage of bulbs with lifetime between 700 and 1200 hours:
Cumulative frequency at 1200 = 410, at 700 = 64
Number in range = 410 - 64 = 346
Percentage:
$$\frac{346}{500} \times 100 = 69.2\%$$
5. **Confirm Values by Computation:**
Already computed median, quartiles, interquartile range, quartile deviation, and percentage in range using formulas above.
6. **Risk if Guarantee Replacement for Bulbs Lasting Less Than 1000 Hours:**
Number of bulbs lasting less than 1000 hours = cumulative frequency at 1000 = 250
Risk = fraction of bulbs replaced = $\frac{250}{500} = 0.5$ or 50%
7. **Probability of Refunds with 100-day Guarantee (7 hours/day):**
Total hours in 100 days:
$$100 \times 7 = 700$$
Number of bulbs lasting less than 700 hours = cumulative frequency at 700 = 64
Probability of refund:
$$\frac{64}{500} = 0.128 = 12.8\%$$
**Final answers:**
- Mean = 975.6 hours
- Standard deviation = 131.2 hours
- Median = 998.5 hours
- Quartile deviation = 170.3 hours
- Percentage between 700 and 1200 hours = 69.2%
- Risk of replacement under 1000 hours = 50%
- Probability of refund under 100-day guarantee = 12.8%