Exponential Family 840F15
1. **Problem Statement:**
Given independent random variables $X_i \sim N(0, i\sigma^2)$ for $i=1,2,\ldots,n$, with pdf
$$f(x_i|\sigma^2) = \frac{1}{\sqrt{2\pi i \sigma^2}} \exp\left(-\frac{x_i^2}{2 i \sigma^2}\right),$$
prove or disprove that $f(x_i|\sigma^2)$ belongs to the regular 1-parameter exponential family.
2. **Recall the form of 1-parameter exponential family:**
$$f(x|\theta) = g(x) \exp\{\theta t(x) - \psi(\theta)\}$$
where $\psi'(\theta) = E[t(X)]$ and $\psi''(\theta) = \mathrm{Var}[t(X)]$.
3. **Rewrite the pdf:**
$$f(x_i|\sigma^2) = \frac{1}{\sqrt{2\pi i \sigma^2}} \exp\left(-\frac{x_i^2}{2 i \sigma^2}\right) = \frac{1}{\sqrt{2\pi i}} \sigma^{-1} \exp\left(-\frac{x_i^2}{2 i \sigma^2}\right).$$
4. **Express in exponential family form:**
Let $\theta = -\frac{1}{2 \sigma^2}$ (parameter),
then
$$f(x_i|\theta) = \frac{1}{\sqrt{2\pi i}} \exp\left(\theta \frac{x_i^2}{i} - \frac{1}{2} \ln(-\frac{1}{2\theta})\right).$$
More precisely,
$$f(x_i|\theta) = g(x_i) \exp\{\theta t_i(x_i) - \psi_i(\theta)\}$$
where
- $g(x_i) = \frac{1}{\sqrt{2\pi i}}$,
- $t_i(x_i) = \frac{x_i^2}{i}$,
- $\theta = -\frac{1}{2 \sigma^2}$,
- $\psi_i(\theta) = -\frac{1}{2} \ln(-2\theta)$.
5. **Check derivatives:**
$$\psi_i'(\theta) = \frac{1}{2\theta} = E[t_i(X_i)] = E\left(\frac{X_i^2}{i}\right) = \frac{E(X_i^2)}{i} = \frac{i \sigma^2}{i} = \sigma^2,$$
but since $\theta = -\frac{1}{2 \sigma^2}$, then
$$\psi_i'(\theta) = \frac{1}{2\theta} = -\sigma^2,$$
which contradicts the positive expectation.
6. **Resolution:**
Rewrite $\psi_i(\theta)$ correctly:
Since
$$f(x_i|\theta) = \frac{1}{\sqrt{2\pi i}} \exp\left(\theta \frac{x_i^2}{i} - \psi_i(\theta)\right),$$
and the normalizing constant must satisfy
$$\exp(-\psi_i(\theta)) = \int \frac{1}{\sqrt{2\pi i}} \exp\left(\theta \frac{x_i^2}{i}\right) dx_i,$$
which is the moment generating function of $\frac{X_i^2}{i}$.
Since $X_i \sim N(0, i \sigma^2)$, $\frac{X_i^2}{i} \sim \sigma^2 \chi_1^2$, so
$$\psi_i(\theta) = -\frac{1}{2} \ln(-2\theta),$$
valid for $\theta < 0$.
7. **Conclusion:**
The pdf $f(x_i|\sigma^2)$ can be expressed in the form
$$f(x_i|\theta) = g(x_i) \exp\{\theta t_i(x_i) - \psi_i(\theta)\}$$
with
- $g(x_i) = \frac{1}{\sqrt{2\pi i}}$,
- $t_i(x_i) = \frac{x_i^2}{i}$,
- $\theta = -\frac{1}{2 \sigma^2}$,
- $\psi_i(\theta) = -\frac{1}{2} \ln(-2\theta)$,
which satisfies the regular 1-parameter exponential family form.
Hence, **$f(x_i|\sigma^2)$ belongs to the regular 1-parameter exponential family.**