Eigenvalues Pca 9589D8
1. **Problem Statement:**
Given the covariance matrix $$\Sigma = \begin{pmatrix} 2 & 3 \\ 3 & 7 \end{pmatrix}$$, compute the eigenvalues and the proportion of total variance explained by the first principal component (PC1).
2. **Formula and Explanation:**
To find eigenvalues $$\lambda$$ of matrix $$\Sigma$$, solve the characteristic equation:
$$\det(\Sigma - \lambda I) = 0$$
where $$I$$ is the identity matrix.
For a 2x2 matrix $$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$, the characteristic polynomial is:
$$ (a - \lambda)(d - \lambda) - bc = 0 $$
3. **Apply to the given matrix:**
$$ (2 - \lambda)(7 - \lambda) - 3 \times 3 = 0 $$
$$ (2 - \lambda)(7 - \lambda) - 9 = 0 $$
Expanding:
$$ 14 - 2\lambda - 7\lambda + \lambda^2 - 9 = 0 $$
$$ \lambda^2 - 9\lambda + 5 = 0 $$
4. **Solve quadratic equation:**
Using quadratic formula:
$$ \lambda = \frac{9 \pm \sqrt{(-9)^2 - 4 \times 1 \times 5}}{2} = \frac{9 \pm \sqrt{81 - 20}}{2} = \frac{9 \pm \sqrt{61}}{2} $$
Calculate $$\sqrt{61} \approx 7.81$$:
$$ \lambda_1 = \frac{9 + 7.81}{2} = \frac{16.81}{2} = 8.405 $$
$$ \lambda_2 = \frac{9 - 7.81}{2} = \frac{1.19}{2} = 0.595 $$
5. **Interpretation:**
Eigenvalues represent the variance explained by each principal component.
6. **Proportion of variance explained by PC1:**
Total variance = sum of eigenvalues = $$8.405 + 0.595 = 9$$
Proportion explained by PC1:
$$ \frac{8.405}{9} \approx 0.934 $$ or 93.4%.
**Final answers:**
- Eigenvalues: $$\lambda_1 = 8.405$$, $$\lambda_2 = 0.595$$
- Proportion of variance explained by PC1: 93.4%