Covariance Calculations
1. **Problem 10: Scatter Diagram and Correlation Sign**
Given data:
Mathematics (X): 15, 18, 21, 24, 27, 30, 36, 39, 42, 48
Statistics (Y): 25, 25, 27, 27, 31, 33, 35, 41, 41, 45
- We plot each pair $(X_i,Y_i)$ on the coordinate plane.
- By observing the points, as Mathematics marks increase, Statistics marks also tend to increase.
- This indicates a **positive correlation** between Mathematics and Statistics scores.
2. **Problem 11: Find Covariance of X and Y**
Given:
$X = [1,2,3,4,5]$,
$Y = [2,4,6,8,10]$
- Calculate means:
$$\bar{X} = \frac{1+2+3+4+5}{5} = 3$$
$$\bar{Y} = \frac{2+4+6+8+10}{5} = 6$$
- Covariance formula:
$$\mathrm{Cov}(X,Y) = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})$$
- Compute products:
\[(1-3)(2-6) = (-2)(-4) = 8\]
\[(2-3)(4-6) = (-1)(-2) = 2\]
\[(3-3)(6-6) = 0\]
\[(4-3)(8-6) = 1 \times 2 = 2\]
\[(5-3)(10-6) = 2 \times 4 = 8\]
- Sum = $8 + 2 + 0 + 2 + 8 = 20$
- Divide by $n=5$:
$$\mathrm{Cov}(X,Y) = \frac{20}{5} = 4$$
3. **Problem 12: Covariance for new data**
Given:
$X = [64,65,66,67,68,69,70]$
$Y = [66,67,65,68,70,68,72]$
- Calculate means:
$$\bar{X} = \frac{64+65+66+67+68+69+70}{7} = 67$$
$$\bar{Y} = \frac{66+67+65+68+70+68+72}{7} = 67.4286$$ (approx)
- Calculate $(X_i - \bar{X})(Y_i - \bar{Y})$ for each pair:
\[(64-67)(66-67.4286) = (-3)(-1.4286) = 4.2858\]
\[(65-67)(67-67.4286) = (-2)(-0.4286) = 0.8572\]
\[(66-67)(65-67.4286) = (-1)(-2.4286) = 2.4286\]
\[(67-67)(68-67.4286) = 0 \times 0.5714 = 0\]
\[(68-67)(70-67.4286) = 1 \times 2.5714 = 2.5714\]
\[(69-67)(68-67.4286) = 2 \times 0.5714 = 1.1428\]
\[(70-67)(72-67.4286) = 3 \times 4.5714 = 13.7142\]
- Sum these values:
$$4.2858 + 0.8572 + 2.4286 + 0 + 2.5714 + 1.1428 + 13.7142 = 24$$ (approx)
- Divide by n = 7:
$$\mathrm{Cov}(X,Y) \approx \frac{24}{7} = 3.4286$$
4. **Problem 13: Covariance with given X and Y**
Given:
$X = [1,2,3,4,5,6,7,8,9,10]$
$Y = [10,9,8,8,6,12,4,3,18,1]$
- Calculate means:
$$\bar{X} = \frac{1+...+10}{10} = 5.5$$
$$\bar{Y} = \frac{10+9+8+8+6+12+4+3+18+1}{10} = 7.9$$
- Calculate $(X_i - \bar{X})(Y_i - \bar{Y})$ for each i:
\[(1-5.5)(10-7.9) = (-4.5)(2.1) = -9.45\]
\[(2-5.5)(9-7.9) = (-3.5)(1.1) = -3.85\]
\[(3-5.5)(8-7.9) = (-2.5)(0.1) = -0.25\]
\[(4-5.5)(8-7.9) = (-1.5)(0.1) = -0.15\]
\[(5-5.5)(6-7.9) = (-0.5)(-1.9) = 0.95\]
\[(6-5.5)(12-7.9) = (0.5)(4.1) = 2.05\]
\[(7-5.5)(4-7.9) = (1.5)(-3.9) = -5.85\]
\[(8-5.5)(3-7.9) = (2.5)(-4.9) = -12.25\]
\[(9-5.5)(18-7.9) = (3.5)(10.1) = 35.35\]
\[(10-5.5)(1-7.9) = (4.5)(-6.9) = -31.05\]
- Sum these:
$$-9.45 -3.85 -0.25 -0.15 +0.95 +2.05 -5.85 -12.25 +35.35 -31.05 = -24.45$$
- Divide by $n=10$:
$$\mathrm{Cov}(X,Y) = \frac{-24.45}{10} = -2.445$$
**Final answers:**
10. Correlation is **positive**.
11. $\mathrm{Cov}(X,Y) = 4$
12. $\mathrm{Cov}(X,Y) \approx 3.43$
13. $\mathrm{Cov}(X,Y) \approx -2.45$