Confidence Interval Difference
1. **State the problem:** We want to find the 95% confidence interval (CI) for the difference between two population means, $\mu_1 - \mu_2$, based on two independent samples.
2. **Given data:**
- Sample 1: $n_1 = 40$, $\bar{x}_1 = 105$, $s_1 = 12$
- Sample 2: $n_2 = 50$, $\bar{x}_2 = 98$, $s_2 = 15$
- Confidence level = 95%
3. **Formula for the CI of difference of means (assuming unequal variances):**
$$\left(\bar{x}_1 - \bar{x}_2\right) \pm t^* \times \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$
where $t^*$ is the critical value from the $t$-distribution with degrees of freedom calculated by the Welch-Satterthwaite equation.
4. **Calculate the difference of sample means:**
$$\bar{x}_1 - \bar{x}_2 = 105 - 98 = 7$$
5. **Calculate the standard error (SE):**
$$SE = \sqrt{\frac{12^2}{40} + \frac{15^2}{50}} = \sqrt{\frac{144}{40} + \frac{225}{50}} = \sqrt{3.6 + 4.5} = \sqrt{8.1} \approx 2.846$$
6. **Calculate degrees of freedom (df) using Welch-Satterthwaite formula:**
$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}} = \frac{(3.6 + 4.5)^2}{\frac{3.6^2}{39} + \frac{4.5^2}{49}} = \frac{8.1^2}{\frac{12.96}{39} + \frac{20.25}{49}} = \frac{65.61}{0.3323 + 0.4133} = \frac{65.61}{0.7456} \approx 88.0$$
7. **Find the critical $t^*$ value for 95% CI and $df \approx 88$:**
From $t$-tables or calculator, $t^* \approx 1.987$
8. **Calculate margin of error (ME):**
$$ME = t^* \times SE = 1.987 \times 2.846 \approx 5.655$$
9. **Construct the confidence interval:**
$$7 \pm 5.655 = (7 - 5.655, 7 + 5.655) = (1.345, 12.655)$$
**Final answer:** The 95% confidence interval for $\mu_1 - \mu_2$ is approximately $$\boxed{(1.35, 12.66)}$$.