Conditional Probabilities
1. **Problem 1: Reading habits and conditional probabilities**
Given probabilities:
$P(A)=0.14$, $P(B)=0.23$, $P(C)=0.37$, $P(A\cap B)=0.08$, $P(A\cap C)=0.09$, $P(B\cap C)=0.13$, $P(A\cap B\cap C)=0.05$.
From Venn diagram inside parts (excluding triple intersections), note:
- $P(A \text{ only})=0.02$
- $P(B \text{ only})=0.07$
- $P(C \text{ only})=0.20$
- $P(A\cap B \text{ only})=0.03$
- $P(A\cap C \text{ only})=0.04$
- $P(B\cap C \text{ only})=0.08$
- $P(A\cap B\cap C)=0.05$
- Outside all three = 0.51
(Or use given values for intersections directly.)
**(a) Find $P(A|B)$:**
By definition,
$$
P(A|B) = \frac{P(A\cap B)}{P(B)}.
$$
We have $P(A\cap B) = 0.08$, $P(B) = 0.23$, so
$$
P(A|B) = \frac{0.08}{0.23} \approx 0.3478.
$$
**(b) Find $P(A|B \cup C)$:**
First find $P(B \cup C)$:
$$
P(B\cup C) = P(B) + P(C) - P(B\cap C) = 0.23 + 0.37 - 0.13 = 0.47.
$$
Next find $P(A \cap (B \cup C)) = P((A \cap B) \cup (A \cap C))$.
By inclusion-exclusion:
$$
P(A \cap (B \cup C)) = P(A\cap B) + P(A\cap C) - P(A\cap B \cap C) = 0.08 + 0.09 - 0.05 = 0.12.
$$
So,
$$
P(A|B \cup C) = \frac{0.12}{0.47} \approx 0.2553.
$$
**(c) Find $P(A|\text{reads at least one column})$:**
The event "reads at least one" is $A \cup B \cup C$.
Calculate $P(A \cup B \cup C)$ using triple union formula:
$$
P(A\cup B\cup C) = P(A) + P(B) + P(C) - P(A\cap B) - P(A\cap C) - P(B\cap C) + P(A\cap B\cap C).
$$
Substitute:
$$
= 0.14 + 0.23 + 0.37 - 0.08 - 0.09 - 0.13 + 0.05 = 0.49.
$$
Calculate $P(A \cap (A \cup B \cup C)) = P(A)$ since $A$ is subset of $A \cup B \cup C$.
So,
$$
P(A | \text{reads at least one}) = \frac{P(A)}{P(A\cup B\cup C)} = \frac{0.14}{0.49} \approx 0.2857.
$$
2. **Problem 2: Voting probabilities for couples**
Given:
$P(H) = 0.21$ (husband votes),
$P(W) = 0.28$ (wife votes),
$P(H \cap W) = 0.15$ (both vote).
**(a) Find probability at least one votes:**
$$
P(H \cup W) = P(H) + P(W) - P(H \cap W) = 0.21 + 0.28 - 0.15 = 0.34.
$$
**(b) Probability husband votes given wife votes:**
$$
P(H|W) = \frac{P(H \cap W)}{P(W)} = \frac{0.15}{0.28} \approx 0.5357.
$$
3. **Problem 3: Disease testing and Bayes' theorem**
Given:
- $P(D) = 1/1000 = 0.001$ (has disease),
- $P(\neg D) = 0.999$ (no disease),
- $P(+|D) = 0.99$ (test positive if diseased),
- $P(+|\neg D) = 0.02$ (false positive rate).
Find $P(D|+)$ the probability the person has disease given positive test.
By Bayes' theorem:
$$
P(D|+) = \frac{P(+|D)P(D)}{P(+|D)P(D) + P(+|\neg D)P(\neg D)} =
\frac{0.99 \times 0.001}{0.99 \times 0.001 + 0.02 \times 0.999}.
$$
Calculate numerator: $0.00099$
Calculate denominator: $0.00099 + 0.01998 = 0.02097$
So,
$$
P(D|+) = \frac{0.00099}{0.02097} \approx 0.0472.
$$
4. **Problem 4: Gas station customer behavior**
Given probabilities:
$$
P(A_1) = 0.40,\quad P(A_2) = 0.35,\quad P(A_3) = 0.25,
$$
where $A_i$ indicate gas type (1=regular, 2=extra, 3=premium).
Filling tank probabilities given gas type:
$$
P(B|A_1) = 0.30,\quad P(B|A_2) = 0.60,\quad P(B|A_3) = 0.50,
$$
where $B$ means "fills tank".
**(a) Probability next customer uses extra gas and fills tank:**
$$
P(A_2 \cap B) = P(A_2)P(B|A_2) = 0.35 \times 0.60 = 0.21.
$$
**(b) Probability next customer fills tank (total):**
Use law of total probability:
$$
P(B) = \sum_{i=1}^3 P(A_i) P(B|A_i) = 0.40 \times 0.30 + 0.35 \times 0.60 + 0.25 \times 0.50 = 0.12 + 0.21 + 0.125 = 0.455.
$$
**(c) If tank filled, find probability gas used is regular, extra, premium:**
Use Bayes' theorem:
$$
P(A_i|B) = \frac{P(A_i) P(B|A_i)}{P(B)}.
$$
So,
$$
P(A_1|B) = \frac{0.40 \times 0.30}{0.455} = \frac{0.12}{0.455} \approx 0.2637,
$$
$$
P(A_2|B) = \frac{0.35 \times 0.60}{0.455} = \frac{0.21}{0.455} \approx 0.4615,
$$
$$
P(A_3|B) = \frac{0.25 \times 0.50}{0.455} = \frac{0.125}{0.455} \approx 0.2747.
$$
**Final answers:**
1(a) $\approx 0.348$
1(b) $\approx 0.255$
1(c) $\approx 0.286$
2(a) $= 0.34$
2(b) $\approx 0.536$
3) $\approx 0.047$
4(a) $= 0.21$
4(b) $= 0.455$
4(c) $\approx (0.264, 0.462, 0.275)$