Binomial Normal Probability A360F1
1. **Problem Statement:**
We have two parts: (a) a binomial probability problem about attendance at a stadium where 70% are males, and (b) a normal distribution problem about meals served at a café with mean 6000 and standard deviation 600.
---
### Part (a): Binomial Probability
2. **Given:**
- Probability of male spectator $p=0.7$
- Number of trials $n=7$
3. **Formulas:**
- Binomial probability: $$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
- For "at most" probabilities: $$P(X \leq k) = \sum_{i=0}^k P(X=i)$$
4. **(i) Probability exactly 4 males:**
- Calculate $P(X=4)$ where $X$ = number of males.
- $$P(X=4) = \binom{7}{4} (0.7)^4 (0.3)^3$$
- Calculate combination: $\binom{7}{4} = \frac{7!}{4!3!} = 35$
- Calculate powers: $(0.7)^4 = 0.2401$, $(0.3)^3 = 0.027$
- Multiply: $35 \times 0.2401 \times 0.027 = 35 \times 0.0064827 = 0.2269$
5. **(ii) Probability at most 5 females:**
- Females probability $q=0.3$
- Number of females $Y$ in 7 people is binomial with $p=0.3$
- "At most 5 females" means $P(Y \leq 5) = 1 - P(Y=6) - P(Y=7)$
- Calculate $P(Y=6)$:
$$P(Y=6) = \binom{7}{6} (0.3)^6 (0.7)^1 = 7 \times 0.000729 \times 0.7 = 0.00357$$
- Calculate $P(Y=7)$:
$$P(Y=7) = \binom{7}{7} (0.3)^7 (0.7)^0 = 1 \times 0.0002187 \times 1 = 0.0002187$$
- Sum: $0.00357 + 0.0002187 = 0.00379$
- So, $P(Y \leq 5) = 1 - 0.00379 = 0.9962$
---
### Part (b): Normal Distribution
6. **Given:**
- Mean $\mu=6000$
- Standard deviation $\sigma=600$
7. **Standardize using z-score:**
$$z = \frac{X - \mu}{\sigma}$$
8. **(i) Probability number of meals $\leq 5000$:**
- Calculate $z$:
$$z = \frac{5000 - 6000}{600} = \frac{-1000}{600} = -1.6667$$
- Use standard normal table or calculator:
$$P(Z \leq -1.6667) \approx 0.0478$$
9. **(ii) Probability number of meals $> 7500$:**
- Calculate $z$:
$$z = \frac{7500 - 6000}{600} = \frac{1500}{600} = 2.5$$
- Probability:
$$P(Z > 2.5) = 1 - P(Z \leq 2.5) = 1 - 0.9938 = 0.0062$$
10. **(iii) Probability between 5500 and 6500:**
- Calculate $z$ for 5500:
$$z_1 = \frac{5500 - 6000}{600} = -0.8333$$
- Calculate $z$ for 6500:
$$z_2 = \frac{6500 - 6000}{600} = 0.8333$$
- Probability:
$$P(5500 \leq X \leq 6500) = P(-0.8333 \leq Z \leq 0.8333) = P(Z \leq 0.8333) - P(Z \leq -0.8333)$$
- From tables:
$$P(Z \leq 0.8333) \approx 0.7977, \quad P(Z \leq -0.8333) \approx 0.2023$$
- So:
$$0.7977 - 0.2023 = 0.5954$$
11. **(iv) Find $x$ such that $P(X < x) = 0.4$:**
- Find $z$ for 0.4 quantile:
$$z \approx -0.253$$
- Convert back:
$$x = \mu + z \sigma = 6000 + (-0.253)(600) = 6000 - 151.8 = 5848.2$$
12. **(v) Find $x$ such that $P(X > x) = 0.2$ (top 20%):**
- So $P(X \leq x) = 0.8$
- Find $z$ for 0.8 quantile:
$$z \approx 0.8416$$
- Convert back:
$$x = 6000 + 0.8416 \times 600 = 6000 + 504.96 = 6504.96$$
---
**Final answers:**
- (a)(i) $P(4 \text{ males}) = 0.2269$
- (a)(ii) $P(\leq 5 \text{ females}) = 0.9962$
- (b)(i) $P(X \leq 5000) = 0.0478$
- (b)(ii) $P(X > 7500) = 0.0062$
- (b)(iii) $P(5500 \leq X \leq 6500) = 0.5954$
- (b)(iv) $x = 5848.2$
- (b)(v) $x = 6504.96$