Asian Import Statistics
1. Problem 18: Given import data from various Asian countries for years 1984 and 1985 (in million US dollars), compute the requested values a_3 and a_4.
The data points (import values for 1984) are:
\[ a = [297.2, 266.1, 820.1, 101.8, 431.9, 19.5, 8.4, 113.2, 3.7] \]
a_3 is the third element in the array (since indexing starts at 1):
$$a_3 = 820.1$$
Similarly, a_4 is the fourth element:
$$a_4 = 101.8$$
2. Problem 20: From data in Problem 18 (using 1984 values), calculate:
a. Variance:
- Find the mean \(\bar{a}\):
$$\bar{a} = \frac{1}{9}\sum_{i=1}^9 a_i = \frac{297.2 + 266.1 + 820.1 + 101.8 + 431.9 + 19.5 + 8.4 + 113.2 + 3.7}{9} = \frac{2061.9}{9} = 229.1$$
- Calculate variance:
$$\sigma^2 = \frac{1}{9-1} \sum_{i=1}^9 (a_i - \bar{a})^2$$
Calculate each squared deviation:
$$(297.2 - 229.1)^2 = 4624.81$$
$$(266.1 - 229.1)^2 = 1369$$
$$(820.1 - 229.1)^2 = 348102.4$$
$$(101.8 - 229.1)^2 = 16214.1$$
$$(431.9 - 229.1)^2 = 41498.2$$
$$(19.5 - 229.1)^2 = 43715.2$$
$$(8.4 - 229.1)^2 = 48700.1$$
$$(113.2 - 229.1)^2 = 13466.4$$
$$(3.7 - 229.1)^2 = 50616.2$$
Sum of squared deviations:
$$4624.81 + 1369 + 348102.4 + 16214.1 + 41498.2 + 43715.2 + 48700.1 + 13466.4 + 50616.2 = 566206.4$$
Thus,
$$\sigma^2 = \frac{566206.4}{8} = 70775.8$$
b. Standard deviation:
$$\sigma = \sqrt{70775.8} \approx 266.0$$
c. Coefficient of skewness (sample skewness):
$$g_1 = \frac{n}{(n-1)(n-2)} \sum \left( \frac{a_i - \bar{a}}{\sigma} \right)^3$$
Calculate each \( (a_i - \bar{a})/\sigma \) and cube:
$$(\frac{297.2 - 229.1}{266.0})^3 = (0.254)^3 = 0.0164$$
$$(\frac{266.1 - 229.1}{266.0})^3 = (0.137)^3 = 0.0026$$
$$(\frac{820.1 - 229.1}{266.0})^3 = (2.21)^3 = 10.75$$
$$(\frac{101.8 - 229.1}{266.0})^3 = (-0.479)^3 = -0.110$$
$$(\frac{431.9 - 229.1}{266.0})^3 = (0.765)^3 = 0.447$$
$$(\frac{19.5 - 229.1}{266.0})^3 = (-0.791)^3 = -0.495$$
$$(\frac{8.4 - 229.1}{266.0})^3 = (-0.826)^3 = -0.564$$
$$(\frac{113.2 - 229.1}{266.0})^3 = (-0.443)^3 = -0.087$$
$$(\frac{3.7 - 229.1}{266.0})^3 = (-0.848)^3 = -0.610$$
Sum:
$$0.0164 + 0.0026 + 10.75 - 0.11 + 0.447 - 0.495 - 0.564 - 0.087 - 0.610 = 9.349$$
Then,
$$g_1 = \frac{9}{8 \times 7} \times 9.349 = \frac{9}{56} \times 9.349 \approx 1.503$$
d. Coefficient of kurtosis (excess kurtosis):
$$g_2 = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum \left( \frac{a_i - \bar{a}}{\sigma} \right)^4 - \frac{3(n-1)^2}{(n-2)(n-3)}$$
Calculate each \( (a_i - \bar{a})/\sigma \) to the fourth power:
$$(0.254)^4=0.0042$$
$$(0.137)^4=0.0004$$
$$(2.21)^4=23.76$$
$$(-0.479)^4=0.053$$
$$(0.765)^4=0.342$$
$$(-0.791)^4=0.391$$
$$(-0.826)^4=0.465$$
$$(-0.443)^4=0.039$$
$$(-0.848)^4=0.517$$
Sum:
$$0.0042 + 0.0004 + 23.76 + 0.053 + 0.342 + 0.391 + 0.465 + 0.039 + 0.517 = 25.57$$
Plug into formula:
Numerator coefficient:
$$\frac{9 \times 10}{8 \times 7 \times 6} = \frac{90}{336} = 0.2679$$
First term:
$$0.2679 \times 25.57 = 6.85$$
Second term:
$$\frac{3 \times (8)^2}{7 \times 6} = \frac{3 \times 64}{42} = 4.57$$
Thus,
$$g_2 = 6.85 - 4.57 = 2.28$$
Final answers:
- $$a_3 = 820.1$$
- $$a_4 = 101.8$$
- Variance: $$70775.8$$
- Standard deviation: $$266.0$$
- Coefficient of skewness: $$1.503$$
- Coefficient of kurtosis: $$2.28$$