Am Signal Sampling 73E5F2
1. **Problem Statement:**
We have a message signal $$m(t) = \begin{cases} 3\cos(50\pi t) + \sin(10\pi t), & t \leq 2 \\ 0, & t > 2 \end{cases}$$
and a carrier signal $$c(t) = \cos(500\pi t)$$ with amplitude $$A_C = 12$$ volts.
We want to:
- (a) Sample the message signal at 100 Hz to get 256 points.
- (b) Sample the conventional AM signal $$x_{AM}(t) = A_C[1 + m(t)]c(t)$$ at 1000 Hz to get 2048 points.
- (c) Compute and plot the normalized magnitude spectrum of the message signal.
- (d) Compute and plot the normalized magnitude spectrum of the AM signal.
2. **Formulas and Important Rules:**
- Sampling: $$m[n] = m\left(\frac{n}{f_s}\right)$$ where $$f_s$$ is the sampling frequency.
- Conventional AM signal: $$x_{AM}(t) = A_C[1 + m(t)]c(t)$$.
- Discrete Fourier Transform (DFT): $$M[k] = \sum_{n=0}^{N-1} m[n] e^{-j2\pi kn/N}$$.
- Normalized magnitude spectrum: $$\frac{|M[k]|}{\max(|M[k]|)}$$.
- Use fftshift to center zero frequency component.
3. **Step-by-step Solution:**
**(a) Message Signal Sampling:**
- Sampling frequency $$f_s = 100$$ Hz.
- Sampling interval $$T_s = \frac{1}{f_s} = 0.01$$ seconds.
- Number of points $$N = 256$$.
- Time vector: $$t_n = nT_s, n=0,1,...,255$$.
- For $$t_n \leq 2$$, $$m[n] = 3\cos(50\pi t_n) + \sin(10\pi t_n)$$; else $$m[n] = 0$$.
**(b) Conventional AM Signal Sampling:**
- Sampling frequency $$f_{s,AM} = 1000$$ Hz.
- Sampling interval $$T_{s,AM} = 0.001$$ seconds.
- Number of points $$N_{AM} = 2048$$.
- Time vector: $$t_{AM,n} = nT_{s,AM}, n=0,1,...,2047$$.
- Compute $$m(t_{AM,n})$$ similarly as above.
- Compute $$x_{AM}[n] = A_C [1 + m(t_{AM,n})] \cos(500\pi t_{AM,n})$$.
**(c) Message Signal Spectrum Analysis:**
- Compute DFT: $$M[k] = \text{fft}(m[n])$$.
- Normalize magnitude: $$|M[k]|_{norm} = \frac{|M[k]|}{\max(|M[k]|)}$$.
- Use fftshift to center zero frequency.
**(d) Conventional AM Signal Spectrum Analysis:**
- Compute DFT: $$X_{AM}[k] = \text{fft}(x_{AM}[n])$$.
- Normalize magnitude: $$|X_{AM}[k]|_{norm} = \frac{|X_{AM}[k]|}{\max(|X_{AM}[k]|)}$$.
- Use fftshift to center zero frequency.
4. **MATLAB/GNU Octave Code Snippets:**
```matlab
% (a) Message Signal Sampling
fs = 100; N = 256; t = (0:N-1)/fs;
m = zeros(1,N);
idx = t <= 2;
m(idx) = 3*cos(50*pi*t(idx)) + sin(10*pi*t(idx));
figure; stem(t,m); title('Message Signal m[n]'); xlabel('Time (s)'); ylabel('Amplitude');
% (b) Conventional AM Signal Sampling
fs_AM = 1000; N_AM = 2048; t_AM = (0:N_AM-1)/fs_AM;
m_AM = zeros(1,N_AM);
idx_AM = t_AM <= 2;
m_AM(idx_AM) = 3*cos(50*pi*t_AM(idx_AM)) + sin(10*pi*t_AM(idx_AM));
A_C = 12;
c = cos(500*pi*t_AM);
x_AM = A_C*(1 + m_AM).*c;
figure; stem(t_AM,x_AM); title('Conventional AM Signal x_{AM}[n]'); xlabel('Time (s)'); ylabel('Amplitude');
% (c) Message Signal Spectrum Analysis
M = fft(m);
M_shift = fftshift(M);
M_mag_norm = abs(M_shift)/max(abs(M_shift));
k = -N/2:N/2-1;
figure; stem(k,M_mag_norm); title('Normalized Magnitude Spectrum of m[n]'); xlabel('Frequency Bin'); ylabel('Normalized Magnitude');
% (d) Conventional AM Signal Spectrum Analysis
X_AM = fft(x_AM);
X_AM_shift = fftshift(X_AM);
X_AM_mag_norm = abs(X_AM_shift)/max(abs(X_AM_shift));
k_AM = -N_AM/2:N_AM/2-1;
figure; stem(k_AM,X_AM_mag_norm); title('Normalized Magnitude Spectrum of x_{AM}[n]'); xlabel('Frequency Bin'); ylabel('Normalized Magnitude');
```
5. **Explanation:**
- We sample the message and AM signals at specified frequencies to get discrete sequences.
- The DFT reveals frequency components; fftshift centers the zero frequency.
- Normalization helps visualize relative magnitudes.
- The plots show time-domain samples and frequency-domain spectra.
**Final answers:**
- Sampled message sequence $$m[n]$$ with 256 points.
- Sampled AM sequence $$x_{AM}[n]$$ with 2048 points.
- Normalized magnitude spectra of both signals computed and plotted.