Subjects random processes

Power Spectral Density 3E3Dde

Step-by-step solutions with LaTeX - clean, fast, and student-friendly.

Search Solutions

Power Spectral Density 3E3Dde


1. **Problem Statement:** Given the autocorrelation function of a random process: $$ R(\tau) = \begin{cases} \lambda^2 & |\tau| > \varepsilon \\ \lambda^2 + \lambda \left(1 - \frac{|\tau|}{\varepsilon}\right) & |\tau| \leq \varepsilon \end{cases} $$ Find the power spectral density (PSD) of the process. 2. **Formula and Explanation:** The power spectral density $S_x(\omega)$ is the Fourier transform of the autocorrelation function $R(\tau)$: $$ S_x(\omega) = \int_{-\infty}^{\infty} R(\tau) e^{-j \omega \tau} d\tau $$ Since $R(\tau)$ is an even function (depends on $|\tau|$), the Fourier transform reduces to a cosine transform: $$ S_x(\omega) = 2 \int_0^{\infty} R(\tau) \cos(\omega \tau) d\tau $$ 3. **Break the integral into two parts:** - For $0 \leq \tau \leq \varepsilon$, use $R(\tau) = \lambda^2 + \lambda \left(1 - \frac{\tau}{\varepsilon}\right)$ - For $\tau > \varepsilon$, use $R(\tau) = \lambda^2$ So, $$ S_x(\omega) = 2 \left[ \int_0^{\varepsilon} \left(\lambda^2 + \lambda \left(1 - \frac{\tau}{\varepsilon}\right)\right) \cos(\omega \tau) d\tau + \int_{\varepsilon}^{\infty} \lambda^2 \cos(\omega \tau) d\tau \right] $$ 4. **Evaluate the integrals:** - First integral: $$ I_1 = \int_0^{\varepsilon} \left(\lambda^2 + \lambda - \frac{\lambda \tau}{\varepsilon}\right) \cos(\omega \tau) d\tau = \int_0^{\varepsilon} (\lambda^2 + \lambda) \cos(\omega \tau) d\tau - \frac{\lambda}{\varepsilon} \int_0^{\varepsilon} \tau \cos(\omega \tau) d\tau $$ - Second integral: $$ I_2 = \lambda^2 \int_{\varepsilon}^{\infty} \cos(\omega \tau) d\tau $$ 5. **Note:** The integral $\int_{\varepsilon}^{\infty} \cos(\omega \tau) d\tau$ does not converge in the usual sense. Usually, the autocorrelation function of a stationary process must be absolutely integrable or the PSD is defined in the distributional sense. Here, we interpret the PSD as the Fourier transform of the truncated autocorrelation or consider the process is wide-sense stationary with this autocorrelation shape over $[-\varepsilon, \varepsilon]$ and constant outside. 6. **Focus on the finite part:** Calculate $I_1$: - $\int_0^{\varepsilon} \cos(\omega \tau) d\tau = \frac{\sin(\omega \varepsilon)}{\omega}$ - $\int_0^{\varepsilon} \tau \cos(\omega \tau) d\tau = \frac{\varepsilon \sin(\omega \varepsilon)}{\omega} + \frac{\cos(\omega \varepsilon) - 1}{\omega^2}$ So, $$ I_1 = (\lambda^2 + \lambda) \frac{\sin(\omega \varepsilon)}{\omega} - \frac{\lambda}{\varepsilon} \left( \frac{\varepsilon \sin(\omega \varepsilon)}{\omega} + \frac{\cos(\omega \varepsilon) - 1}{\omega^2} \right) $$ Simplify: $$ I_1 = (\lambda^2 + \lambda) \frac{\sin(\omega \varepsilon)}{\omega} - \lambda \frac{\sin(\omega \varepsilon)}{\omega} - \frac{\lambda}{\varepsilon} \frac{\cos(\omega \varepsilon) - 1}{\omega^2} = \lambda^2 \frac{\sin(\omega \varepsilon)}{\omega} - \frac{\lambda}{\varepsilon} \frac{\cos(\omega \varepsilon) - 1}{\omega^2} $$ 7. **Final expression for PSD:** Ignoring the divergent part for $\tau > \varepsilon$, the PSD is approximately: $$ S_x(\omega) = 2 I_1 = 2 \left[ \lambda^2 \frac{\sin(\omega \varepsilon)}{\omega} - \frac{\lambda}{\varepsilon} \frac{\cos(\omega \varepsilon) - 1}{\omega^2} \right] $$ This expression gives the power spectral density of the process based on the given autocorrelation function. **Answer:** $$ \boxed{ S_x(\omega) = 2 \lambda^2 \frac{\sin(\omega \varepsilon)}{\omega} - 2 \frac{\lambda}{\varepsilon} \frac{\cos(\omega \varepsilon) - 1}{\omega^2} } $$