Variance Linear 0Aefd8
1. **Problem a:** Show that for a random vector $\mathbf{X}$, $\mathrm{Var}(A\mathbf{X} + \mathbf{b}) = A \mathrm{Var}(\mathbf{X}) A^T$ where $A$ is a $(k \times p)$ matrix and $\mathbf{b}$ is a $(p \times 1)$ vector of constants.
2. **Formula and explanation:**
The variance of a random vector $\mathbf{Y} = A\mathbf{X} + \mathbf{b}$ is given by
$$\mathrm{Var}(\mathbf{Y}) = E[(\mathbf{Y} - E[\mathbf{Y}])(\mathbf{Y} - E[\mathbf{Y}])^T].$$
Since $\mathbf{b}$ is constant, it does not affect variance.
3. **Step-by-step derivation:**
- Compute $E[\mathbf{Y}] = E[A\mathbf{X} + \mathbf{b}] = A E[\mathbf{X}] + \mathbf{b}$.
- Then,
$$\mathrm{Var}(\mathbf{Y}) = E[(A\mathbf{X} + \mathbf{b} - A E[\mathbf{X}] - \mathbf{b})(A\mathbf{X} + \mathbf{b} - A E[\mathbf{X}] - \mathbf{b})^T]$$
which simplifies to
$$E[(A(\mathbf{X} - E[\mathbf{X}]))(A(\mathbf{X} - E[\mathbf{X}]))^T] = E[A(\mathbf{X} - E[\mathbf{X}])(\mathbf{X} - E[\mathbf{X}])^T A^T].$$
- Since $A$ is constant, it factors out:
$$A E[(\mathbf{X} - E[\mathbf{X}])(\mathbf{X} - E[\mathbf{X}])^T] A^T = A \mathrm{Var}(\mathbf{X}) A^T.$$
4. **Conclusion:**
Thus, we have shown
$$\mathrm{Var}(A\mathbf{X} + \mathbf{b}) = A \mathrm{Var}(\mathbf{X}) A^T.$$