Random Variable Distributions
1. **Problem:**
(a) Given a Poisson random variable $X$ with $P\{X=0\} = e^{-\mu}$, find $E[X]$.
2. **Formula and explanation:**
For a Poisson distribution with parameter $\lambda$, the probability mass function is:
$$P\{X = k\} = \frac{\lambda^k e^{-\lambda}}{k!}$$
and the expected value is:
$$E[X] = \lambda$$
3. **Solution:**
Given $P\{X=0\} = e^{-\mu}$, comparing with the Poisson pmf for $k=0$:
$$P\{X=0\} = e^{-\lambda} = e^{-\mu} \implies \lambda = \mu$$
Therefore,
$$E[X] = \mu$$
---
(c) **Problem:**
$X$ is uniformly distributed over $(1,2)$. Find $z$ such that
$$P\{X > z + \mu_x\} = \frac{1}{2}$$
where $\mu_x$ is the mean of $X$.
**Solution:**
1. Mean of uniform $(a,b)$ is $\mu_x = \frac{a+b}{2} = \frac{1+2}{2} = 1.5$.
2. We want $P\{X > z + 1.5\} = 0.5$.
3. Since $X \sim U(1,2)$, the CDF is $F_X(x) = \frac{x-1}{1}$ for $1 \le x \le 2$.
4. Then,
$$P\{X > t\} = 1 - F_X(t) = 1 - (t-1) = 2 - t$$
5. Set $t = z + 1.5$:
$$2 - (z + 1.5) = 0.5 \implies z + 1.5 = 1.5 \implies z = 0$$
---
(d) **Problem:**
$X \sim N(2,1)$, find $P\{|X - 2| < 1\}$.
**Solution:**
1. Standardize:
$$P\{|X - 2| < 1\} = P(1 < X < 3) = P\left(\frac{1-2}{1} < Z < \frac{3-2}{1}\right) = P(-1 < Z < 1)$$
2. Using standard normal CDF $\Phi$:
$$= \Phi(1) - \Phi(-1) = \Phi(1) - (1 - \Phi(1)) = 2\Phi(1) - 1$$
3. Numerically, $\Phi(1) \approx 0.8413$, so
$$P = 2 \times 0.8413 - 1 = 0.6826$$
---
(e) **Problem:**
$X \sim Binomial(n,p)$ with $E[X] = 5$ and $Var[X] = 4$. Find $n$ and $p$.
**Solution:**
1. Recall:
$$E[X] = np = 5$$
$$Var[X] = np(1-p) = 4$$
2. From $np=5$, $p = \frac{5}{n}$.
3. Substitute into variance:
$$n \times \frac{5}{n} \times \left(1 - \frac{5}{n}\right) = 4 \implies 5 \left(1 - \frac{5}{n}\right) = 4$$
4. Simplify:
$$5 - \frac{25}{n} = 4 \implies \frac{25}{n} = 1 \implies n = 25$$
5. Then,
$$p = \frac{5}{25} = 0.2$$
---
(f) **Problem:**
If $E[X] = 10$ and $\sigma_X = 3$, can $X$ have a negative binomial distribution?
**Explanation:**
For negative binomial with parameters $r, p$:
$$E[X] = \frac{r(1-p)}{p}, \quad Var[X] = \frac{r(1-p)}{p^2}$$
Since $Var[X] > E[X]$ always (because $Var[X] = E[X]/p > E[X]$),
Check if $Var[X] = 9$ is greater than $E[X] = 10$.
Here, $Var[X] = 9 < 10$, which contradicts the property.
**Answer:** No, $X$ cannot have a negative binomial distribution with these moments.
---
(g) **Problem:**
$X$ has negative exponential distribution with mean 2. Find
$$P\{X < 1 | X < 2\}$$
**Solution:**
1. Exponential with mean $2$ has parameter:
$$\lambda = \frac{1}{2}$$
2. Conditional probability:
$$P\{X < 1 | X < 2\} = \frac{P\{X < 1\}}{P\{X < 2\}} = \frac{1 - e^{-\lambda \times 1}}{1 - e^{-\lambda \times 2}} = \frac{1 - e^{-1/2}}{1 - e^{-1}}$$
---
(h) **Problem:**
Name three distributions for which
$$P\{X \leq \mu_X\} = \frac{1}{2}$$
**Answer:**
1. Symmetric distributions about the mean, e.g., Normal distribution.
2. Uniform distribution on symmetric intervals.
3. Any continuous distribution where the mean equals the median, e.g., Laplace distribution.
---
(i) **Problem:**
$X \sim Binomial(n=100, p=0.1)$. Evaluate
$$P\{X \leq \mu_X - 3\sigma_X\}$$
**Solution:**
1. Compute mean and std dev:
$$\mu_X = np = 10$$
$$\sigma_X = \sqrt{np(1-p)} = \sqrt{100 \times 0.1 \times 0.9} = 3$$
2. Calculate:
$$\mu_X - 3\sigma_X = 10 - 3 \times 3 = 1$$
3. So,
$$P\{X \leq 1\} = P(X=0) + P(X=1)$$
4. Using binomial pmf:
$$P(X=0) = (0.9)^{100} \approx 2.656 \times 10^{-5}$$
$$P(X=1) = 100 \times 0.1 \times (0.9)^{99} \approx 2.95 \times 10^{-4}$$
5. Sum:
$$\approx 3.22 \times 10^{-4}$$
---
(j) **Problem:**
If $X$ has Poisson distribution and $P\{X=0\} = p = 1$, find $E[X]$.
**Solution:**
Since $P\{X=0\} = e^{-\lambda} = 1$, then $\lambda = 0$.
Therefore,
$$E[X] = \lambda = 0$$
---
(k) **Problem:**
For $X \sim Binomial(n,p)$ with fixed $n$, find $p$ maximizing $Var[X]$.
**Solution:**
Variance:
$$Var[X] = np(1-p)$$
Maximize w.r.t $p$:
$$\frac{d}{dp} np(1-p) = n(1 - 2p) = 0 \implies p = \frac{1}{2}$$
---
(l) **Problem:**
$X$ has negative exponential distribution with parameter $\lambda$. If
$$P\{X \leq 1\} = P\{X > 1\}$$
find $Var[X]$.
**Solution:**
1. Given:
$$1 - e^{-\lambda} = e^{-\lambda} \implies 1 = 2 e^{-\lambda} \implies e^{-\lambda} = \frac{1}{2}$$
2. So,
$$\lambda = \ln 2$$
3. Variance:
$$Var[X] = \frac{1}{\lambda^2} = \frac{1}{(\ln 2)^2}$$
---
(m) **Problem:**
$X$ is uniform with mean 1 and variance $\frac{3}{4}$. Find $P\{X < 0\}$.
**Solution:**
1. For uniform $(a,b)$:
$$\mu = \frac{a+b}{2} = 1$$
$$\sigma^2 = \frac{(b-a)^2}{12} = \frac{3}{4}$$
2. From variance:
$$(b-a)^2 = 9 \implies b - a = 3$$
3. From mean:
$$a + b = 2$$
4. Solve system:
$$b - a = 3$$
$$a + b = 2$$
Add:
$$2b = 5 \implies b = 2.5$$
Then,
$$a = 2 - b = 2 - 2.5 = -0.5$$
5. Probability:
$$P\{X < 0\} = \frac{0 - a}{b - a} = \frac{0 - (-0.5)}{3} = \frac{0.5}{3} = \frac{1}{6}$$
---
(n) **Problem:**
If $X$ has beta distribution, can $E[1/X] = 1$?
**Answer:**
Yes, if the beta distribution is defined on $(0,1)$ with parameters $\alpha, \beta$ such that $\alpha > 1$ (to ensure $E[1/X]$ exists), it is possible to have $E[1/X] = 1$ by choosing parameters accordingly.
---
(o) **Problem:**
Can $X$ have the same distribution as $-X$? If so, when?
**Answer:**
Yes, if $X$ is symmetric about zero, i.e., its distribution satisfies:
$$X \stackrel{d}{=} -X$$
Examples include symmetric distributions like Normal(0, $\sigma^2$), uniform on $[-a,a]$, etc.
---
(p) **Problem:**
If $X$ has moment generating function (MGF):
$$M_X(t) = \exp(e^t - 1)$$
Find $E[X]$.
**Solution:**
1. Recall:
$$E[X] = M_X'(0)$$
2. Differentiate:
$$M_X'(t) = M_X(t) \times e^t$$
3. Evaluate at $t=0$:
$$M_X(0) = \exp(e^0 - 1) = \exp(1 - 1) = 1$$
$$M_X'(0) = 1 \times e^0 = 1$$
Therefore,
$$E[X] = 1$$
---
2 (a) **Problem:** Find the mode of the beta distribution with parameters $\alpha, \beta > 1$.
**Solution:**
$$\text{Mode} = \frac{\alpha - 1}{\alpha + \beta - 2}$$
(b) **Problem:** Find the mode of the gamma distribution with shape $k > 1$ and scale $\theta$.
**Solution:**
$$\text{Mode} = (k - 1) \theta$$
---
3 (a) Parametric family with mean $\geq$ variance: Binomial distribution.
(b) Mean $=$ variance: Poisson distribution.
(c) Mean $\leq$ variance: Negative binomial distribution.
(d) Mean can be less than, equal to, or greater than variance: Normal distribution.
---
4 (a) $X \sim N(2,2)$, express
$$P\{|X - 1| \leq 2\}$$
Standardize:
$$P(1 - 2 \leq X \leq 1 + 2) = P(-1 \leq X \leq 3)$$
$$= P\left(\frac{-1 - 2}{\sqrt{2}} \leq Z \leq \frac{3 - 2}{\sqrt{2}}\right) = P\left(-\frac{3}{\sqrt{2}} \leq Z \leq \frac{1}{\sqrt{2}}\right)$$
$$= \Phi\left(\frac{1}{\sqrt{2}}\right) - \Phi\left(-\frac{3}{\sqrt{2}}\right)$$
(b) $X \sim N(\mu, \sigma^2 = \mu^2)$, $\mu > 0$, find
$$P\{X < -\mu | X < \mu\}$$
Standardize:
$$P\{X < -\mu | X < \mu\} = \frac{P\{X < -\mu\}}{P\{X < \mu\}} = \frac{\Phi\left(\frac{-\mu - \mu}{\mu}\right)}{\Phi\left(\frac{\mu - \mu}{\mu}\right)} = \frac{\Phi(-2)}{\Phi(0)} = \Phi(-2)$$
(c) Find $h(\mu)$ so that $P\{X \leq 0\}$ does not depend on $\mu$ for $\mu > 0$.
Set:
$$Z = \frac{0 - \mu}{\sqrt{h(\mu)}}$$
For $P\{X \leq 0\} = \Phi(Z)$ to be constant, $Z$ must be constant.
So,
$$\frac{-\mu}{\sqrt{h(\mu)}} = c \implies h(\mu) = \frac{\mu^2}{c^2}$$
Thus,
$$\sigma^2 = h(\mu) = k \mu^2$$
for some constant $k$.
---
5 (a) Median of exponential $f_X(x) = \lambda e^{-\lambda x} I_{(0,\infty)}(x)$:
Median $m$ satisfies:
$$P\{X \leq m\} = 0.5 \implies 1 - e^{-\lambda m} = 0.5 \implies m = \frac{\ln 2}{\lambda}$$
(b) Median of uniform $(\theta_1, \theta_2)$:
$$m = \frac{\theta_1 + \theta_2}{2}$$
(c) Binomial $n=4, p=0.5$ median is 2 (since distribution is symmetric).
(d) Binomial $n=5, p=0.5$ median is 2 or 3 (both are medians).
(e) Binomial $n=2, p=0.9$ median is 2 (since $P(X=2)$ is highest).
---
6 **Problem:**
Contractor's low bid $Y \sim U(3C, 2C)$, profit is zero if contractor loses, else profit is bid minus $C$. Find bid maximizing expected profit.
**Solution:**
1. Let bid be $b$.
2. Probability contractor wins:
$$P(b < Y) = P(Y > b) = \frac{2C - b}{2C - 3C} = \frac{2C - b}{-C}$$
Since $2C - 3C = -C$, interval is reversed, so correct interval is $(2C, 3C)$ or check carefully.
Actually, interval $(3C, 2C)$ is invalid since $3C > 2C$; likely typo, assume $(2C, 3C)$.
Then,
$$P(Y > b) = \frac{3C - b}{3C - 2C} = 3C - b$$
Divided by $C$:
$$= \frac{3C - b}{C} = 3 - \frac{b}{C}$$
3. Expected profit:
$$E[\text{profit}] = (b - C) \times P(\text{win}) = (b - C) \left(3 - \frac{b}{C}\right)$$
4. Maximize w.r.t $b$:
$$\frac{d}{db} E = (3 - \frac{b}{C}) + (b - C)(-\frac{1}{C}) = 3 - \frac{b}{C} - \frac{b}{C} + 1 = 4 - \frac{2b}{C}$$
Set derivative zero:
$$4 - \frac{2b}{C} = 0 \implies b = 2C$$
---
7 (a) $X \sim Poisson(4)$, find stock for 95% certainty over 25 days.
Total mean:
$$\lambda = 4 \times 25 = 100$$
Use normal approximation:
$$Z_{0.95} = 1.645$$
Stock needed:
$$k = \lambda + Z \sqrt{\lambda} = 100 + 1.645 \times 10 = 116.45 \approx 117$$
(b) Expected days with zero sales:
$$P(X=0) = e^{-4}$$
Expected days:
$$25 \times e^{-4} \approx 25 \times 0.0183 = 0.4575$$
---
8 (a) $X \sim Binomial(n,p)$, distribution is binomial with pmf:
$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$