Poisson Mean Variance
1. **Stating the problem:**
We are given the probability mass function (PMF) of a Poisson random variable $X$:
$$P(X = x) = \frac{e^{-\mu} \mu^x}{x!}$$
where $\mu$ is the parameter.
We need to show:
(i) $E(X) = \mu$
(ii) $\mathrm{Var}(X) = \mu$
2. **Recall formulas and important rules:**
- The expectation (mean) of a discrete random variable $X$ is:
$$E(X) = \sum_{x=0}^\infty x P(X=x)$$
- The variance is:
$$\mathrm{Var}(X) = E(X^2) - [E(X)]^2$$
- For the Poisson distribution, the PMF is as given.
3. **Calculate $E(X)$:**
$$E(X) = \sum_{x=0}^\infty x \frac{e^{-\mu} \mu^x}{x!}$$
Note that when $x=0$, the term is zero because of the factor $x$.
Rewrite the sum starting from $x=1$:
$$E(X) = e^{-\mu} \sum_{x=1}^\infty x \frac{\mu^x}{x!}$$
Simplify $x \frac{\mu^x}{x!} = \mu \frac{\mu^{x-1}}{(x-1)!}$:
$$E(X) = e^{-\mu} \mu \sum_{x=1}^\infty \frac{\mu^{x-1}}{(x-1)!}$$
Change index $k = x-1$:
$$E(X) = e^{-\mu} \mu \sum_{k=0}^\infty \frac{\mu^k}{k!}$$
Recognize the series as the expansion of $e^{\mu}$:
$$\sum_{k=0}^\infty \frac{\mu^k}{k!} = e^{\mu}$$
Therefore:
$$E(X) = e^{-\mu} \mu e^{\mu} = \mu$$
4. **Calculate $E(X^2)$:**
We use the identity:
$$E(X(X-1)) = \sum_{x=0}^\infty x(x-1) P(X=x)$$
Calculate:
$$E(X(X-1)) = e^{-\mu} \sum_{x=0}^\infty x(x-1) \frac{\mu^x}{x!}$$
For $x=0$ and $x=1$, terms are zero. Start from $x=2$:
$$E(X(X-1)) = e^{-\mu} \sum_{x=2}^\infty x(x-1) \frac{\mu^x}{x!}$$
Rewrite $x(x-1) \frac{\mu^x}{x!} = \mu^2 \frac{\mu^{x-2}}{(x-2)!}$:
$$E(X(X-1)) = e^{-\mu} \mu^2 \sum_{x=2}^\infty \frac{\mu^{x-2}}{(x-2)!}$$
Change index $k = x-2$:
$$E(X(X-1)) = e^{-\mu} \mu^2 \sum_{k=0}^\infty \frac{\mu^k}{k!} = e^{-\mu} \mu^2 e^{\mu} = \mu^2$$
5. **Use $E(X^2) = E(X(X-1)) + E(X)$:**
$$E(X^2) = \mu^2 + \mu$$
6. **Calculate variance:**
$$\mathrm{Var}(X) = E(X^2) - [E(X)]^2 = (\mu^2 + \mu) - \mu^2 = \mu$$
**Final answers:**
(i) $E(X) = \mu$
(ii) $\mathrm{Var}(X) = \mu$