Poisson Interarrival
1. **Problem statement:** Customer calls arrive at a call center following a Poisson process with a mean rate of 10 calls per hour. Let $T$ be the interarrival time between two consecutive calls.
2. **Part (a): PDF and CDF of $T$**
- The interarrival time $T$ in a Poisson process is exponentially distributed with rate $\lambda = 10$ calls/hour.
- The PDF (probability density function) of $T$ is:
$$f_T(t) = \lambda e^{-\lambda t} = 10 e^{-10 t}, \quad t \geq 0$$
- The CDF (cumulative distribution function) of $T$ is:
$$F_T(t) = P(T \leq t) = 1 - e^{-\lambda t} = 1 - e^{-10 t}, \quad t \geq 0$$
3. **Part (b): Probability next call arrives in less than 3 minutes**
- Convert 3 minutes to hours: $3 \text{ minutes} = \frac{3}{60} = 0.05$ hours.
- Use the CDF:
$$P(T < 0.05) = F_T(0.05) = 1 - e^{-10 \times 0.05} = 1 - e^{-0.5}$$
- Calculate:
$$1 - e^{-0.5} \approx 1 - 0.6065 = 0.3935$$
- So, the probability is approximately 0.3935.
4. **Part (c): Median interarrival time**
- The median $m$ satisfies:
$$P(T \leq m) = 0.5$$
- Using the CDF:
$$1 - e^{-10 m} = 0.5 \implies e^{-10 m} = 0.5$$
- Taking natural logarithm:
$$-10 m = \ln(0.5) = -\ln(2)$$
$$m = \frac{\ln(2)}{10} \approx \frac{0.6931}{10} = 0.06931 \text{ hours}$$
- Convert to minutes:
$$0.06931 \times 60 \approx 4.16 \text{ minutes}$$
5. **Part (d): Probability wait more than 12 minutes given a call just came in**
- Memoryless property of exponential distribution means:
$$P(T > t) = e^{-\lambda t}$$
- Convert 12 minutes to hours:
$$12 \text{ minutes} = \frac{12}{60} = 0.2 \text{ hours}$$
- Calculate:
$$P(T > 0.2) = e^{-10 \times 0.2} = e^{-2} \approx 0.1353$$
**Final answers:**
- (a) PDF: $f_T(t) = 10 e^{-10 t}$, CDF: $F_T(t) = 1 - e^{-10 t}$
- (b) $P(T < 3 \text{ min}) \approx 0.3935$
- (c) Median interarrival time $\approx 4.16$ minutes
- (d) $P(T > 12 \text{ min}) \approx 0.1353$