Mgf Mean Variance 17C6E5
1. **Problem Statement:**
A random variable $X$ has a probability distribution given by
$$f(x) = p(1-p)^x \text{ for } x=0,1,2,\ldots \text{ and } 0 \text{ otherwise}.$$
(i) Derive the moment generating function (MGF) of $X$.
2. **Formula and Explanation:**
The moment generating function $M_X(t)$ is defined as
$$M_X(t) = E[e^{tX}] = \sum_{x=0}^\infty e^{tx} f(x).$$
Since $f(x) = p(1-p)^x$, substitute to get
$$M_X(t) = \sum_{x=0}^\infty e^{tx} p (1-p)^x = p \sum_{x=0}^\infty \left(e^t (1-p)\right)^x.$$
This is a geometric series with ratio $r = e^t (1-p)$, which converges if $|r| < 1$.
3. **Intermediate Work:**
Using the geometric series sum formula
$$\sum_{x=0}^\infty r^x = \frac{1}{1-r},$$
we get
$$M_X(t) = \frac{p}{1 - e^t (1-p)} \quad \text{for } |e^t (1-p)| < 1.$$
4. **Mean and Variance from MGF:**
The mean $E[X]$ and variance $Var(X)$ can be found from derivatives of $M_X(t)$:
$$E[X] = M_X'(0), \quad Var(X) = M_X''(0) - (M_X'(0))^2.$$
Calculate the first derivative:
$$M_X(t) = \frac{p}{1 - (1-p)e^t} = p \left(1 - (1-p)e^t\right)^{-1}.$$
Using the chain rule,
$$M_X'(t) = p \cdot (-1) \cdot \left(1 - (1-p)e^t\right)^{-2} \cdot (-(1-p)e^t) = \frac{p (1-p) e^t}{\left(1 - (1-p)e^t\right)^2}.$$
Evaluate at $t=0$:
$$M_X'(0) = \frac{p (1-p)}{(1 - (1-p))^2} = \frac{p (1-p)}{p^2} = \frac{1-p}{p}.$$
Calculate the second derivative:
$$M_X''(t) = \frac{d}{dt} M_X'(t) = \frac{d}{dt} \left( \frac{p (1-p) e^t}{(1 - (1-p)e^t)^2} \right).$$
Using quotient and chain rules,
$$M_X''(t) = \frac{p (1-p) e^t (1 - (1-p)e^t)^2 + p (1-p) e^t \cdot 2 (1 - (1-p)e^t) (1-p) e^t}{(1 - (1-p)e^t)^4}$$
Simplify numerator at $t=0$:
$$M_X''(0) = \frac{p (1-p) (1)^2 + 2 p (1-p)^2}{1^4} = p (1-p) + 2 p (1-p)^2 = p (1-p)(1 + 2(1-p)).$$
Calculate explicitly:
$$1 + 2(1-p) = 1 + 2 - 2p = 3 - 2p,$$
so
$$M_X''(0) = p (1-p)(3 - 2p).$$
Divide by $p^3$ due to denominator powers (rechecking carefully): Actually, the denominator at $t=0$ is $(1 - (1-p) e^0)^4 = (1 - (1-p) imes 1)^4 = p^4$.
Recalculate numerator at $t=0$:
First term: $p (1-p) e^0 (1 - (1-p) e^0)^2 = p (1-p) imes 1 imes p^2 = p^3 (1-p)$
Second term: $2 p (1-p)^2 e^{2 imes 0} (1 - (1-p) e^0) = 2 p (1-p)^2 imes 1 imes p = 2 p^2 (1-p)^2$
Sum numerator: $p^3 (1-p) + 2 p^2 (1-p)^2 = p^2 (1-p) (p + 2 (1-p)) = p^2 (1-p) (p + 2 - 2p) = p^2 (1-p) (2 - p)$
Therefore,
$$M_X''(0) = \frac{p^2 (1-p) (2 - p)}{p^4} = \frac{(1-p)(2-p)}{p^2}.$$
5. **Calculate Variance:**
$$Var(X) = M_X''(0) - (M_X'(0))^2 = \frac{(1-p)(2-p)}{p^2} - \left(\frac{1-p}{p}\right)^2 = \frac{(1-p)(2-p) - (1-p)^2}{p^2}.$$
Simplify numerator:
$$(1-p)(2-p) - (1-p)^2 = (1-p)(2-p - (1-p)) = (1-p)(2-p -1 + p) = (1-p)(1) = 1-p.$$
So,
$$Var(X) = \frac{1-p}{p^2}.$$
**Final answers:**
- Moment generating function:
$$M_X(t) = \frac{p}{1 - (1-p) e^t}.$$
- Mean:
$$E[X] = \frac{1-p}{p}.$$
- Variance:
$$Var(X) = \frac{1-p}{p^2}.$$