Mean Variance 597F8E
1. **State the problem:**
We have a probability distribution with values of $k$ and their probabilities $P(k)$:
| $k$ | $P(k)$ |
|-----|--------|
| 1 | 0.2 |
| 4 | 0.4 |
| 5 | 0.2 |
| 7 | 0.2 |
We need to complete the table, find the mean ($p$), variance, and standard deviation, then interpret the results.
2. **Formula for mean (expected value):**
$$p = \sum k \cdot P(k)$$
3. **Calculate $k \cdot P(k)$ for each $k$:**
- For $k=1$: $1 \times 0.2 = 0.2$
- For $k=4$: $4 \times 0.4 = 1.6$
- For $k=5$: $5 \times 0.2 = 1.0$
- For $k=7$: $7 \times 0.2 = 1.4$
Sum these to get the mean:
$$p = 0.2 + 1.6 + 1.0 + 1.4 = 4.2$$
4. **Calculate $x - p$ for each $k$:**
- $1 - 4.2 = -3.2$
- $4 - 4.2 = -0.2$
- $5 - 4.2 = 0.8$
- $7 - 4.2 = 2.8$
5. **Calculate $(x - p)^2$ for each $k$:**
- $(-3.2)^2 = 10.24$
- $(-0.2)^2 = 0.04$
- $(0.8)^2 = 0.64$
- $(2.8)^2 = 7.84$
6. **Calculate $(x - p)^2 \times P(k)$ for each $k$:**
- $10.24 \times 0.2 = 2.048$
- $0.04 \times 0.4 = 0.016$
- $0.64 \times 0.2 = 0.128$
- $7.84 \times 0.2 = 1.568$
Sum these to get the variance:
$$\text{Variance} = 2.048 + 0.016 + 0.128 + 1.568 = 3.76$$
7. **Calculate the standard deviation:**
$$\text{Standard deviation} = \sqrt{3.76} \approx 1.94$$
8. **Complete the table:**
| $k$ | $P(k)$ | $k \cdot P(k)$ | $x - p$ | $(x - p)^2$ | $(x - p)^2 \times P(k)$ |
|-----|--------|-----------------|---------|-------------|--------------------------|
| 1 | 0.2 | 0.2 | -3.2 | 10.24 | 2.048 |
| 4 | 0.4 | 1.6 | -0.2 | 0.04 | 0.016 |
| 5 | 0.2 | 1.0 | 0.8 | 0.64 | 0.128 |
| 7 | 0.2 | 1.4 | 2.8 | 7.84 | 1.568 |
9. **Interpretation:**
The mean value of 4.2 represents the expected value of $k$ in this distribution.
The variance of 3.76 and standard deviation of 1.94 indicate the spread of the values around the mean.
A standard deviation of about 1.94 means that most values of $k$ lie within approximately 2 units from the mean.
**Final answers:**
- Mean ($p$) = 4.20
- Variance = 3.76
- Standard deviation $\approx$ 1.94