Markov Stationary
1. **State the problem:** Find a stationary distribution $\pi$ for the Markov chain with transition matrix
$$
P = \begin{pmatrix}
\frac{1}{3} & \frac{2}{3} & 0 \\
\frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\
0 & \frac{1}{3} & \frac{2}{3}
\end{pmatrix}
$$
This means to find a vector $\pi = (\pi_1, \pi_2, \pi_3)$ such that:
$$\pi P = \pi$$
and $$\pi_1 + \pi_2 + \pi_3 = 1.$$
2. **Write the stationarity equations explicitly:**
$$\pi_1 = \pi_1 \cdot \frac{1}{3} + \pi_2 \cdot \frac{1}{6} + \pi_3 \cdot 0,$$
$$\pi_2 = \pi_1 \cdot \frac{2}{3} + \pi_2 \cdot \frac{1}{3} + \pi_3 \cdot \frac{1}{3},$$
$$\pi_3 = \pi_1 \cdot 0 + \pi_2 \cdot \frac{1}{2} + \pi_3 \cdot \frac{2}{3}.$$
3. **Rewrite the equations:**
From the first:
$$\pi_1 = \frac{1}{3} \pi_1 + \frac{1}{6} \pi_2 \implies \pi_1 - \frac{1}{3} \pi_1 = \frac{1}{6} \pi_2 \implies \frac{2}{3} \pi_1 = \frac{1}{6} \pi_2 \implies \pi_2 = 4 \pi_1.$$
4. Second equation:
$$\pi_2 = \frac{2}{3} \pi_1 + \frac{1}{3} \pi_2 + \frac{1}{3} \pi_3 \\
\implies \pi_2 - \frac{1}{3} \pi_2 = \frac{2}{3} \pi_1 + \frac{1}{3} \pi_3 \\
\implies \frac{2}{3} \pi_2 = \frac{2}{3} \pi_1 + \frac{1}{3} \pi_3 \\
\implies 2 \pi_2 = 2 \pi_1 + \pi_3 \\
\implies \pi_3 = 2 \pi_2 - 2 \pi_1.$$
5. Substitute $\pi_2 = 4 \pi_1$ into the last expression:
$$\pi_3 = 2(4 \pi_1) - 2 \pi_1 = 8 \pi_1 - 2 \pi_1 = 6 \pi_1.$$
6. Use normalization condition:
$$\pi_1 + \pi_2 + \pi_3 = 1 \\
\pi_1 + 4 \pi_1 + 6 \pi_1 = 1 \\
11 \pi_1 = 1 \\
\pi_1 = \frac{1}{11}.$$
7. Find $\pi_2$ and $\pi_3$:
$$\pi_2 = 4 \times \frac{1}{11} = \frac{4}{11},$$
$$\pi_3 = 6 \times \frac{1}{11} = \frac{6}{11}.$$
**Final answer:**
$$\pi = \left(\frac{1}{11}, \frac{4}{11}, \frac{6}{11}\right).$$