Joint Probability Bdc9A2
1. **Problem statement:**
We are given a joint probability density function (pdf) for random variables $X$ and $Y$:
$$f(x,y) = \begin{cases} k(2x + 3y), & 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0, & \text{elsewhere} \end{cases}$$
(i) Find the constant $k$.
(ii) Find $P[(X,Y) \in A]$ where $A = \{(x,y) | 0 < x < \frac{1}{2}, \frac{1}{4} < y < \frac{1}{2}\}$.
(iii) Compute $P(X + Y \leq 1)$.
(b) Show that $E(Y) = E[E(Y|X)]$.
(c) Prove $E(X) = \int_{-\infty}^{\infty} E[X|Y=y] f_Y(y) dy$.
(d) Given $X$ with pdf
$$f(x) = \begin{cases} \frac{1}{100} e^{-\frac{x}{100}}, & x > 0 \\ 0, & \text{elsewhere} \end{cases}$$
Two independent components in series: find pdf of system life $Y$.
---
### (a)(i) Find $k$:
1. The total probability must be 1:
$$\int_0^1 \int_0^1 k(2x + 3y) dy dx = 1$$
2. Compute inner integral:
$$\int_0^1 (2x + 3y) dy = 2x \int_0^1 dy + 3 \int_0^1 y dy = 2x(1) + 3 \cdot \frac{1}{2} = 2x + \frac{3}{2}$$
3. Now outer integral:
$$\int_0^1 k \left(2x + \frac{3}{2}\right) dx = k \left( \int_0^1 2x dx + \int_0^1 \frac{3}{2} dx \right) = k \left( 2 \cdot \frac{1}{2} + \frac{3}{2} \cdot 1 \right) = k (1 + \frac{3}{2}) = k \cdot \frac{5}{2}$$
4. Set equal to 1:
$$k \cdot \frac{5}{2} = 1 \implies k = \frac{2}{5}$$
---
### (a)(ii) Find $P[(X,Y) \in A]$ where $A = \{0 < x < \frac{1}{2}, \frac{1}{4} < y < \frac{1}{2}\}$:
1. Probability is integral over $A$:
$$P = \int_0^{\frac{1}{2}} \int_{\frac{1}{4}}^{\frac{1}{2}} k(2x + 3y) dy dx$$
2. Substitute $k=\frac{2}{5}$:
$$= \frac{2}{5} \int_0^{\frac{1}{2}} \int_{\frac{1}{4}}^{\frac{1}{2}} (2x + 3y) dy dx$$
3. Inner integral:
$$\int_{\frac{1}{4}}^{\frac{1}{2}} (2x + 3y) dy = 2x \left(y \Big|_{\frac{1}{4}}^{\frac{1}{2}}\right) + 3 \left( \frac{y^2}{2} \Big|_{\frac{1}{4}}^{\frac{1}{2}} \right) = 2x \left( \frac{1}{2} - \frac{1}{4} \right) + \frac{3}{2} \left( \left(\frac{1}{2}\right)^2 - \left(\frac{1}{4}\right)^2 \right)$$
4. Calculate:
$$2x \cdot \frac{1}{4} + \frac{3}{2} \left( \frac{1}{4} - \frac{1}{16} \right) = \frac{x}{2} + \frac{3}{2} \cdot \frac{3}{16} = \frac{x}{2} + \frac{9}{32}$$
5. Outer integral:
$$\int_0^{\frac{1}{2}} \left( \frac{x}{2} + \frac{9}{32} \right) dx = \int_0^{\frac{1}{2}} \frac{x}{2} dx + \int_0^{\frac{1}{2}} \frac{9}{32} dx = \frac{1}{2} \cdot \frac{x^2}{2} \Big|_0^{\frac{1}{2}} + \frac{9}{32} \cdot \frac{1}{2}$$
6. Calculate:
$$\frac{1}{2} \cdot \frac{(\frac{1}{2})^2}{2} + \frac{9}{64} = \frac{1}{2} \cdot \frac{1}{8} + \frac{9}{64} = \frac{1}{16} + \frac{9}{64} = \frac{4}{64} + \frac{9}{64} = \frac{13}{64}$$
7. Multiply by $k$:
$$P = \frac{2}{5} \cdot \frac{13}{64} = \frac{26}{320} = \frac{13}{160}$$
---
### (a)(iii) Compute $P(X + Y \leq 1)$:
1. The region is $\{(x,y) | 0 \leq x \leq 1, 0 \leq y \leq 1, x + y \leq 1\}$.
2. Probability:
$$P = \int_0^1 \int_0^{1-x} k(2x + 3y) dy dx$$
3. Substitute $k=\frac{2}{5}$:
$$= \frac{2}{5} \int_0^1 \int_0^{1-x} (2x + 3y) dy dx$$
4. Inner integral:
$$\int_0^{1-x} (2x + 3y) dy = 2x (1-x) + \frac{3}{2} (1-x)^2$$
5. So:
$$P = \frac{2}{5} \int_0^1 \left[ 2x(1-x) + \frac{3}{2} (1-x)^2 \right] dx$$
6. Expand terms:
$$2x(1-x) = 2x - 2x^2$$
$$(1-x)^2 = 1 - 2x + x^2$$
7. Substitute:
$$P = \frac{2}{5} \int_0^1 \left( 2x - 2x^2 + \frac{3}{2} - 3x + \frac{3}{2} x^2 \right) dx = \frac{2}{5} \int_0^1 \left( \frac{3}{2} - x - \frac{1}{2} x^2 \right) dx$$
8. Integrate term by term:
$$\int_0^1 \frac{3}{2} dx = \frac{3}{2}$$
$$\int_0^1 x dx = \frac{1}{2}$$
$$\int_0^1 x^2 dx = \frac{1}{3}$$
9. So:
$$P = \frac{2}{5} \left( \frac{3}{2} - \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{3} \right) = \frac{2}{5} \left( 1 - \frac{1}{6} \right) = \frac{2}{5} \cdot \frac{5}{6} = \frac{1}{3}$$
---
### (b) Show $E(Y) = E[E(Y|X)]$:
1. By definition:
$$E(Y) = \int \int y f(x,y) dx dy$$
2. Conditional expectation:
$$E(Y|X=x) = \int y f_{Y|X}(y|x) dy$$
3. Marginal pdf of $X$:
$$f_X(x) = \int f(x,y) dy$$
4. Then:
$$E[E(Y|X)] = \int E(Y|X=x) f_X(x) dx = \int \left( \int y f_{Y|X}(y|x) dy \right) f_X(x) dx$$
5. Since $f(x,y) = f_{Y|X}(y|x) f_X(x)$,
$$E[E(Y|X)] = \int \int y f(x,y) dy dx = E(Y)$$
---
### (c) Prove $E(X) = \int_{-\infty}^\infty E[X|Y=y] f_Y(y) dy$:
1. By definition:
$$E(X) = \int \int x f(x,y) dx dy$$
2. Conditional expectation:
$$E[X|Y=y] = \int x f_{X|Y}(x|y) dx$$
3. Marginal pdf of $Y$:
$$f_Y(y) = \int f(x,y) dx$$
4. Then:
$$\int E[X|Y=y] f_Y(y) dy = \int \left( \int x f_{X|Y}(x|y) dx \right) f_Y(y) dy = \int \int x f(x,y) dx dy = E(X)$$
---
### (d) Two independent components with exponential lifetimes $X_1, X_2$ with pdf:
$$f(x) = \frac{1}{100} e^{-\frac{x}{100}}, x > 0$$
1. System fails when either component fails, so system life $Y = \min(X_1, X_2)$.
2. CDF of $Y$:
$$F_Y(y) = P(Y \leq y) = 1 - P(Y > y) = 1 - P(X_1 > y, X_2 > y)$$
3. Independence:
$$= 1 - P(X_1 > y) P(X_2 > y)$$
4. For exponential:
$$P(X_i > y) = e^{-\frac{y}{100}}$$
5. So:
$$F_Y(y) = 1 - e^{-\frac{y}{100}} e^{-\frac{y}{100}} = 1 - e^{-\frac{2y}{100}} = 1 - e^{-\frac{y}{50}}$$
6. Differentiate to get pdf:
$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{1}{50} e^{-\frac{y}{50}}, y > 0$$
---
**Final answers:**
(i) $k = \frac{2}{5}$
(ii) $P = \frac{13}{160}$
(iii) $P = \frac{1}{3}$
(b) $E(Y) = E[E(Y|X)]$ holds by law of total expectation.
(c) $E(X) = \int_{-\infty}^\infty E[X|Y=y] f_Y(y) dy$ holds by law of total expectation.
(d) System life pdf:
$$f_Y(y) = \frac{1}{50} e^{-\frac{y}{50}}, y > 0$$