Joint Pmf Analysis E014Bc
1. **Problem Statement:**
Given the joint pmf of discrete random variables $X$ and $Y$:
$$\begin{array}{c|ccc|c}
X \backslash Y & 0 & 1 & 3 & f_1(x) \\
\hline
0 & \frac{1}{8} & \frac{2}{8} & \frac{1}{8} & \frac{4}{8} \\
1 & \frac{2}{8} & \frac{1}{8} & \frac{1}{8} & \frac{4}{8} \\
\hline
f_2(y) & \frac{3}{8} & \frac{3}{8} & \frac{2}{8} & 1
\end{array}$$
Find:
(i) $E(Y|X=x)$
(ii) $\mathrm{Var}(Y|X=x)$
(iii) $\mathrm{Cov}(X,Y)$
(iv) Correlation coefficient $\rho_{XY}$
2. **Formulas and Important Rules:**
- Conditional expectation: $E(Y|X=x) = \sum_y y P(Y=y|X=x)$
- Conditional variance: $\mathrm{Var}(Y|X=x) = E(Y^2|X=x) - [E(Y|X=x)]^2$
- Covariance: $\mathrm{Cov}(X,Y) = E(XY) - E(X)E(Y)$
- Correlation coefficient: $\rho_{XY} = \frac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{Var}(X)\mathrm{Var}(Y)}}$
3. **Calculate $E(Y|X=x)$:**
- For $X=0$:
$$P(Y=y|X=0) = \frac{P(X=0,Y=y)}{P(X=0)}$$
Values: $P(Y=0|0) = \frac{1/8}{4/8} = \frac{1}{4}$, $P(Y=1|0) = \frac{2/8}{4/8} = \frac{1}{2}$, $P(Y=3|0) = \frac{1/8}{4/8} = \frac{1}{4}$
$$E(Y|0) = 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 3 \times \frac{1}{4} = 0 + \frac{1}{2} + \frac{3}{4} = \frac{5}{4} = 1.25$$
- For $X=1$:
$$P(Y=0|1) = \frac{2/8}{4/8} = \frac{1}{2}, P(Y=1|1) = \frac{1/8}{4/8} = \frac{1}{4}, P(Y=3|1) = \frac{1/8}{4/8} = \frac{1}{4}$$
$$E(Y|1) = 0 \times \frac{1}{2} + 1 \times \frac{1}{4} + 3 \times \frac{1}{4} = 0 + \frac{1}{4} + \frac{3}{4} = 1$$
4. **Calculate $\mathrm{Var}(Y|X=x)$:**
- Compute $E(Y^2|X=x)$ first.
- For $X=0$:
$$E(Y^2|0) = 0^2 \times \frac{1}{4} + 1^2 \times \frac{1}{2} + 3^2 \times \frac{1}{4} = 0 + \frac{1}{2} + \frac{9}{4} = \frac{11}{4} = 2.75$$
$$\mathrm{Var}(Y|0) = 2.75 - (1.25)^2 = 2.75 - 1.5625 = 1.1875$$
- For $X=1$:
$$E(Y^2|1) = 0^2 \times \frac{1}{2} + 1^2 \times \frac{1}{4} + 3^2 \times \frac{1}{4} = 0 + \frac{1}{4} + \frac{9}{4} = \frac{10}{4} = 2.5$$
$$\mathrm{Var}(Y|1) = 2.5 - (1)^2 = 2.5 - 1 = 1.5$$
5. **Calculate $\mathrm{Cov}(X,Y)$:**
- Find $E(X)$:
$$E(X) = 0 \times \frac{4}{8} + 1 \times \frac{4}{8} = \frac{4}{8} = 0.5$$
- Find $E(Y)$:
$$E(Y) = 0 \times \frac{3}{8} + 1 \times \frac{3}{8} + 3 \times \frac{2}{8} = 0 + \frac{3}{8} + \frac{6}{8} = \frac{9}{8} = 1.125$$
- Find $E(XY)$:
$$E(XY) = \sum_x \sum_y xy P(X=x,Y=y)$$
$$= 0 \times (0 \times \frac{1}{8} + 1 \times \frac{2}{8} + 3 \times \frac{1}{8}) + 1 \times (0 \times \frac{2}{8} + 1 \times \frac{1}{8} + 3 \times \frac{1}{8})$$
$$= 0 + 1 \times (0 + \frac{1}{8} + \frac{3}{8}) = \frac{4}{8} = 0.5$$
- Therefore,
$$\mathrm{Cov}(X,Y) = 0.5 - (0.5)(1.125) = 0.5 - 0.5625 = -0.0625$$
6. **Calculate $\rho_{XY}$:**
- Find $\mathrm{Var}(X)$:
$$E(X^2) = 0^2 \times \frac{4}{8} + 1^2 \times \frac{4}{8} = 0 + \frac{4}{8} = 0.5$$
$$\mathrm{Var}(X) = E(X^2) - [E(X)]^2 = 0.5 - (0.5)^2 = 0.5 - 0.25 = 0.25$$
- Find $\mathrm{Var}(Y)$:
$$E(Y^2) = 0^2 \times \frac{3}{8} + 1^2 \times \frac{3}{8} + 3^2 \times \frac{2}{8} = 0 + \frac{3}{8} + \frac{18}{8} = \frac{21}{8} = 2.625$$
$$\mathrm{Var}(Y) = 2.625 - (1.125)^2 = 2.625 - 1.265625 = 1.359375$$
- Finally,
$$\rho_{XY} = \frac{-0.0625}{\sqrt{0.25 \times 1.359375}} = \frac{-0.0625}{\sqrt{0.33984375}} = \frac{-0.0625}{0.583} \approx -0.1072$$
**Final answers:**
- (i) $E(Y|X=0) = 1.25$, $E(Y|X=1) = 1$
- (ii) $\mathrm{Var}(Y|X=0) = 1.1875$, $\mathrm{Var}(Y|X=1) = 1.5$
- (iii) $\mathrm{Cov}(X,Y) = -0.0625$
- (iv) $\rho_{XY} \approx -0.1072$