Joint Density Probs B2741C
1. **Problem Statement:**
(a) Given joint pdf $f_{X,Y}(x,y) = \frac{15}{2}(2 - x - y)$ for $0 < x < 1$, $0 < y < 1$, find the conditional density $f_{X|Y}(x|y)$.
(b) Two independent uniform arrivals $X,Y \sim \text{Uniform}(0,60)$ minutes. Find $P(|X - Y| > 10)$, i.e., the probability the first to arrive waits more than 10 minutes.
(c) Given joint pdf $f_{X,Y}(x,y) = \frac{e^{-(x+y)}}{y}$ for $x,y > 0$, find:
(i) $P(X > \frac{1}{Y} | Y = y)$
(ii) $E[X|Y=y]$
(d) Given joint pdf $f_{X,Y}(x,y) = \frac{x}{5} + cy$ for $0 < x < 1$, $1 < y < 5$, find:
(i) constant $c$
(ii) independence of $X$ and $Y$
(iii) $P(X + Y > 3)$
---
2. **Part (a) Conditional Density:**
- Formula: $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
- Find marginal $f_Y(y) = \int_0^1 f_{X,Y}(x,y) dx = \int_0^1 \frac{15}{2}(2 - x - y) dx$
Calculate:
$$f_Y(y) = \frac{15}{2} \int_0^1 (2 - x - y) dx = \frac{15}{2} \left[(2 - y)\cdot 1 - \frac{1^2}{2}\right] = \frac{15}{2} \left(2 - y - \frac{1}{2}\right) = \frac{15}{2} \left(\frac{3}{2} - y\right) = \frac{15}{2} \cdot \frac{3 - 2y}{2} = \frac{15(3 - 2y)}{4}$$
Thus,
$$f_{X|Y}(x|y) = \frac{\frac{15}{2}(2 - x - y)}{\frac{15(3 - 2y)}{4}} = \frac{(2 - x - y)}{\frac{3 - 2y}{2}} = \frac{2(2 - x - y)}{3 - 2y}$$
Domain: $0 < x < 1$, $0 < y < 1$.
---
3. **Part (b) Waiting Time Probability:**
- $X,Y$ independent uniform on $[0,60]$ minutes.
- Probability first to arrive waits more than 10 minutes is $P(|X - Y| > 10)$.
Area of square: $60 \times 60 = 3600$.
Region where $|X - Y| \leq 10$ is a band around the diagonal with width 20.
Area where $|X - Y| \leq 10$ is $3600 - 2 \times$ area of two triangles each with base and height 50.
Calculate area where $|X - Y| \leq 10$:
$$= 3600 - 2 \times \frac{1}{2} \times 50 \times 50 = 3600 - 2500 = 1100$$
So,
$$P(|X - Y| > 10) = 1 - \frac{1100}{3600} = \frac{2500}{3600} = \frac{25}{36} \approx 0.6944$$
---
4. **Part (c) Joint pdf $f_{X,Y}(x,y) = \frac{e^{-(x+y)}}{y}$:**
(i) Find $P\left(X > \frac{1}{Y} | Y = y\right) = P\left(X > \frac{1}{y}\right)$ given $Y=y$.
Conditional pdf of $X$ given $Y=y$:
$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$
Marginal $f_Y(y) = \int_0^\infty \frac{e^{-(x+y)}}{y} dx = \frac{e^{-y}}{y} \int_0^\infty e^{-x} dx = \frac{e^{-y}}{y} \cdot 1 = \frac{e^{-y}}{y}$$
So,
$$f_{X|Y}(x|y) = \frac{\frac{e^{-(x+y)}}{y}}{\frac{e^{-y}}{y}} = e^{-x}, \quad x > 0$$
Therefore,
$$P\left(X > \frac{1}{y} | Y = y\right) = \int_{1/y}^\infty e^{-x} dx = e^{-1/y}$$
(ii) Conditional expectation:
$$E[X|Y=y] = \int_0^\infty x e^{-x} dx = 1$$
Because $X|Y=y$ is exponential with parameter 1.
---
5. **Part (d) Joint pdf $f_{X,Y}(x,y) = \frac{x}{5} + cy$ for $0 < x < 1$, $1 < y < 5$:**
(i) Find $c$ by normalization:
$$\int_1^5 \int_0^1 \left(\frac{x}{5} + cy\right) dx dy = 1$$
Calculate inner integral:
$$\int_0^1 \frac{x}{5} dx = \frac{1}{5} \cdot \frac{1^2}{2} = \frac{1}{10}$$
$$\int_0^1 cy dx = cy \cdot 1 = cy$$
So,
$$\int_1^5 \left(\frac{1}{10} + cy\right) dy = \int_1^5 \frac{1}{10} dy + c \int_1^5 y dy = \frac{1}{10} (5 - 1) + c \left(\frac{5^2}{2} - \frac{1^2}{2}\right) = \frac{4}{10} + c \cdot \frac{25 - 1}{2} = 0.4 + 12c$$
Set equal to 1:
$$0.4 + 12c = 1 \implies 12c = 0.6 \implies c = 0.05$$
(ii) Check independence:
Marginal $f_X(x) = \int_1^5 \left(\frac{x}{5} + 0.05 y\right) dy = \frac{x}{5} (5 - 1) + 0.05 \cdot \frac{5^2 - 1^2}{2} = \frac{4x}{5} + 0.05 \cdot 12 = \frac{4x}{5} + 0.6$
Marginal $f_Y(y) = \int_0^1 \left(\frac{x}{5} + 0.05 y\right) dx = \frac{1}{5} \cdot \frac{1^2}{2} + 0.05 y = 0.1 + 0.05 y$
Check if $f_{X,Y}(x,y) = f_X(x) f_Y(y)$:
$$\left(\frac{x}{5} + 0.05 y\right) \stackrel{?}{=} \left(\frac{4x}{5} + 0.6\right)(0.1 + 0.05 y)$$
Right side expands to terms not matching left side exactly, so $X$ and $Y$ are not independent.
(iii) Find $P(X + Y > 3)$:
Domain: $0 < x < 1$, $1 < y < 5$.
Rewrite event:
$$X + Y > 3 \implies X > 3 - Y$$
For $y$ in $(1,5)$, $3 - y$ varies:
- If $y > 3$, then $3 - y < 0$, so $X >$ negative number always true since $X > 0$.
- If $1 < y \leq 3$, then $3 - y$ in $(0,2)$.
So,
$$P = \int_1^3 \int_{3 - y}^1 \left(\frac{x}{5} + 0.05 y\right) dx dy + \int_3^5 \int_0^1 \left(\frac{x}{5} + 0.05 y\right) dx dy$$
Calculate inner integrals:
For $1 < y \leq 3$:
$$\int_{3 - y}^1 \frac{x}{5} dx = \frac{1}{5} \left[\frac{x^2}{2}\right]_{3 - y}^1 = \frac{1}{10} (1 - (3 - y)^2)$$
$$\int_{3 - y}^1 0.05 y dx = 0.05 y (1 - (3 - y)) = 0.05 y (y - 2)$$
Sum:
$$\frac{1}{10} (1 - (3 - y)^2) + 0.05 y (y - 2)$$
For $3 < y < 5$:
$$\int_0^1 \frac{x}{5} dx = \frac{1}{10}$$
$$\int_0^1 0.05 y dx = 0.05 y$$
Sum:
$$\frac{1}{10} + 0.05 y$$
Now integrate over $y$:
$$P = \int_1^3 \left[\frac{1}{10} (1 - (3 - y)^2) + 0.05 y (y - 2)\right] dy + \int_3^5 \left(\frac{1}{10} + 0.05 y\right) dy$$
Calculate:
First integral:
$$\int_1^3 \left[\frac{1}{10} (1 - (3 - y)^2) + 0.05 y (y - 2)\right] dy = \int_1^3 \left[\frac{1}{10} (1 - (9 - 6y + y^2)) + 0.05 (y^2 - 2y)\right] dy$$
$$= \int_1^3 \left[\frac{1}{10} (1 - 9 + 6y - y^2) + 0.05 y^2 - 0.1 y\right] dy$$
$$= \int_1^3 \left[-\frac{8}{10} + \frac{6}{10} y - \frac{1}{10} y^2 + 0.05 y^2 - 0.1 y\right] dy$$
$$= \int_1^3 \left[-0.8 + 0.6 y - 0.1 y^2 + 0.05 y^2 - 0.1 y\right] dy$$
$$= \int_1^3 \left[-0.8 + (0.6 - 0.1) y + (-0.1 + 0.05) y^2\right] dy = \int_1^3 \left[-0.8 + 0.5 y - 0.05 y^2\right] dy$$
Integrate termwise:
$$= \left[-0.8 y + 0.25 y^2 - \frac{0.05}{3} y^3\right]_1^3 = \left[-0.8 y + 0.25 y^2 - 0.0167 y^3\right]_1^3$$
Calculate at 3:
$$-0.8 \times 3 + 0.25 \times 9 - 0.0167 \times 27 = -2.4 + 2.25 - 0.45 = -0.6$$
Calculate at 1:
$$-0.8 + 0.25 - 0.0167 = -0.5667$$
Difference:
$$-0.6 - (-0.5667) = -0.0333$$
Second integral:
$$\int_3^5 \left(0.1 + 0.05 y\right) dy = \left[0.1 y + 0.025 y^2\right]_3^5 = (0.5 + 0.625) - (0.3 + 0.225) = 1.125 - 0.525 = 0.6$$
Sum total probability:
$$P = -0.0333 + 0.6 = 0.5667$$
---
**Final answers:**
(a) $f_{X|Y}(x|y) = \frac{2(2 - x - y)}{3 - 2y}$ for $0 < x < 1$, $0 < y < 1$
(b) $P(|X - Y| > 10) = \frac{25}{36} \approx 0.6944$
(c)(i) $P\left(X > \frac{1}{Y} | Y = y\right) = e^{-1/y}$
(c)(ii) $E[X|Y=y] = 1$
(d)(i) $c = 0.05$
(d)(ii) $X$ and $Y$ are not independent
(d)(iii) $P(X + Y > 3) \approx 0.5667$