Joint Density 12Ab8E
1. **Problem Statement:** Given the joint pdf of continuous random variables $X$ and $Y$:
$$f(x,y) = \frac{1}{8}(x+y), \quad 0 < x < 2, 0 < y < 2; \quad 0 \text{ otherwise}$$
Find:
(i) Marginal densities $f_1(x)$ and $f_2(y)$.
(ii) Whether $X$ and $Y$ are independent.
(iii) Covariance $\sigma_{XY}$.
(iv) Correlation coefficient $\rho_{XY}$.
2. **Marginal Densities:**
The marginal density of $X$ is:
$$f_1(x) = \int_0^2 f(x,y) dy = \int_0^2 \frac{1}{8}(x+y) dy$$
Calculate:
$$f_1(x) = \frac{1}{8} \left( x \int_0^2 dy + \int_0^2 y dy \right) = \frac{1}{8} \left( x \cdot 2 + \frac{2^2}{2} \right) = \frac{1}{8} (2x + 2) = \frac{x+1}{4}$$
for $0 < x < 2$.
Similarly, marginal density of $Y$:
$$f_2(y) = \int_0^2 f(x,y) dx = \int_0^2 \frac{1}{8}(x+y) dx = \frac{1}{8} \left( y \int_0^2 dx + \int_0^2 x dx \right) = \frac{1}{8} \left( y \cdot 2 + \frac{2^2}{2} \right) = \frac{y+1}{4}$$
for $0 < y < 2$.
3. **Independence Check:**
Two variables are independent if:
$$f(x,y) = f_1(x) f_2(y)$$
Check:
$$f_1(x) f_2(y) = \frac{x+1}{4} \cdot \frac{y+1}{4} = \frac{(x+1)(y+1)}{16}$$
Given joint pdf:
$$f(x,y) = \frac{x+y}{8}$$
Since $\frac{x+y}{8} \neq \frac{(x+1)(y+1)}{16}$ for all $x,y$, $X$ and $Y$ are **not independent**.
4. **Covariance $\sigma_{XY}$:**
Formula:
$$\sigma_{XY} = E[XY] - E[X]E[Y]$$
Calculate $E[X]$:
$$E[X] = \int_0^2 x f_1(x) dx = \int_0^2 x \frac{x+1}{4} dx = \frac{1}{4} \int_0^2 (x^2 + x) dx = \frac{1}{4} \left( \frac{2^3}{3} + \frac{2^2}{2} \right) = \frac{1}{4} \left( \frac{8}{3} + 2 \right) = \frac{1}{4} \cdot \frac{14}{3} = \frac{14}{12} = \frac{7}{6}$$
Calculate $E[Y]$ similarly:
$$E[Y] = \int_0^2 y f_2(y) dy = \frac{7}{6}$$
Calculate $E[XY]$:
$$E[XY] = \int_0^2 \int_0^2 xy f(x,y) dx dy = \int_0^2 \int_0^2 xy \frac{x+y}{8} dx dy = \frac{1}{8} \int_0^2 \int_0^2 (x^2 y + x y^2) dx dy$$
Calculate inner integrals:
$$\int_0^2 x^2 y dx = y \int_0^2 x^2 dx = y \cdot \frac{8}{3}$$
$$\int_0^2 x y^2 dx = y^2 \int_0^2 x dx = y^2 \cdot 2$$
So,
$$E[XY] = \frac{1}{8} \int_0^2 \left( y \frac{8}{3} + 2 y^2 \right) dy = \frac{1}{8} \left( \frac{8}{3} \int_0^2 y dy + 2 \int_0^2 y^2 dy \right) = \frac{1}{8} \left( \frac{8}{3} \cdot 2 + 2 \cdot \frac{8}{3} \right) = \frac{1}{8} \left( \frac{16}{3} + \frac{16}{3} \right) = \frac{1}{8} \cdot \frac{32}{3} = \frac{4}{3}$$
Finally,
$$\sigma_{XY} = E[XY] - E[X]E[Y] = \frac{4}{3} - \frac{7}{6} \cdot \frac{7}{6} = \frac{4}{3} - \frac{49}{36} = \frac{48}{36} - \frac{49}{36} = -\frac{1}{36}$$
5. **Correlation Coefficient $\rho_{XY}$:**
Formula:
$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$
Calculate variances:
$$\sigma_X^2 = E[X^2] - (E[X])^2$$
Calculate $E[X^2]$:
$$E[X^2] = \int_0^2 x^2 f_1(x) dx = \int_0^2 x^2 \frac{x+1}{4} dx = \frac{1}{4} \int_0^2 (x^3 + x^2) dx = \frac{1}{4} \left( \frac{2^4}{4} + \frac{2^3}{3} \right) = \frac{1}{4} \left( 4 + \frac{8}{3} \right) = \frac{1}{4} \cdot \frac{20}{3} = \frac{5}{3}$$
So,
$$\sigma_X^2 = \frac{5}{3} - \left( \frac{7}{6} \right)^2 = \frac{5}{3} - \frac{49}{36} = \frac{60}{36} - \frac{49}{36} = \frac{11}{36}$$
Similarly, $\sigma_Y^2 = \frac{11}{36}$.
Therefore,
$$\rho_{XY} = \frac{-\frac{1}{36}}{\sqrt{\frac{11}{36}} \sqrt{\frac{11}{36}}} = \frac{-\frac{1}{36}}{\frac{11}{36}} = -\frac{1}{11}$$
**Final answers:**
- $f_1(x) = \frac{x+1}{4}$ for $0 < x < 2$
- $f_2(y) = \frac{y+1}{4}$ for $0 < y < 2$
- $X$ and $Y$ are **not independent**
- $\sigma_{XY} = -\frac{1}{36}$
- $\rho_{XY} = -\frac{1}{11}$