Exponential Normal 6A580B
1. **Problem Statement:** Find the PDF, expected value, and variance of an exponential random variable $X \sim \text{Exponential}(\lambda)$.
2. **Formula for Exponential Distribution:**
- PDF: $f_X(x) = \lambda e^{-\lambda x}$ for $x \geq 0$
- Expected value: $E[X] = \frac{1}{\lambda}$
- Variance: $\text{Var}(X) = \frac{1}{\lambda^2}$
3. **Explanation:**
- The exponential distribution models the time between events in a Poisson process.
- The PDF decreases exponentially from $x=0$.
- The mean is the reciprocal of the rate $\lambda$.
- The variance is the square of the mean.
4. **Intermediate Work:**
- PDF is given by definition.
- Expected value calculation:
$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$$
- Variance calculation:
$$E[X^2] = \int_0^\infty x^2 \lambda e^{-\lambda x} dx = \frac{2}{\lambda^2}$$
$$\text{Var}(X) = E[X^2] - (E[X])^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$
---
1. **Problem Statement:** Find the PDF, expected value, and variance of a normal random variable $Z \sim \mathcal{N}(\mu, \sigma^2)$.
2. **Formula for Normal Distribution:**
- PDF: $$f_Z(z) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(z-\mu)^2}{2\sigma^2}}$$
- Expected value: $E[Z] = \mu$
- Variance: $\text{Var}(Z) = \sigma^2$
3. **Explanation:**
- The normal distribution is symmetric and bell-shaped.
- The mean $\mu$ is the center of the distribution.
- The variance $\sigma^2$ controls the spread.
4. **Intermediate Work:**
- PDF is defined by the formula above.
- Expected value and variance are parameters of the distribution.
**Final answers:**
- Exponential: $f_X(x) = \lambda e^{-\lambda x}, E[X] = \frac{1}{\lambda}, \text{Var}(X) = \frac{1}{\lambda^2}$
- Normal: $f_Z(z) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(z-\mu)^2}{2\sigma^2}}, E[Z] = \mu, \text{Var}(Z) = \sigma^2$