Exponential Mgf Moments
1. **Problem Statement:**
Find the moment generating function (MGF) $M_X(s)$ and all moments $E[X^k]$ of a random variable $X$ with exponential distribution parameter $\lambda$, where $0 \leq x < \infty$ and PDF $f_X(x) = \lambda e^{-\lambda x} d(x)$, with $d(x)$ the unit step function.
2. **MGF Definition:**
The MGF of $X$ is defined as
$$M_X(s) = E[e^{sX}] = \int_0^\infty e^{sx} f_X(x) \, dx$$
3. **Calculate MGF:**
Substitute $f_X(x)$:
$$M_X(s) = \int_0^\infty e^{sx} \lambda e^{-\lambda x} \, dx = \lambda \int_0^\infty e^{(s - \lambda)x} \, dx$$
4. **Convergence Condition:**
For the integral to converge, we need $s - \lambda < 0 \Rightarrow s < \lambda$.
5. **Evaluate Integral:**
$$\int_0^\infty e^{(s - \lambda)x} \, dx = \left[ \frac{e^{(s - \lambda)x}}{s - \lambda} \right]_0^\infty = \frac{1}{\lambda - s}$$
6. **Final MGF:**
$$M_X(s) = \frac{\lambda}{\lambda - s}, \quad s < \lambda$$
7. **Moments from MGF:**
The $k$-th moment is given by
$$E[X^k] = M_X^{(k)}(0) = \left. \frac{d^k}{ds^k} M_X(s) \right|_{s=0}$$
8. **Derivatives:**
Since
$$M_X(s) = \frac{\lambda}{\lambda - s} = (1 - \frac{s}{\lambda})^{-1}$$
Using the binomial series for negative powers,
$$M_X(s) = \sum_{k=0}^\infty \frac{k!}{\lambda^k} s^k$$
9. **Explicit Moments:**
Therefore,
$$E[X^k] = \frac{k!}{\lambda^k}$$
**Summary:**
- MGF: $$M_X(s) = \frac{\lambda}{\lambda - s}, \quad s < \lambda$$
- Moments: $$E[X^k] = \frac{k!}{\lambda^k}$$