Discrete Random Variable 9A9E1D
1. **Problem statement:** We have a discrete random variable $X$ with probability mass function (pmf) given by $$P(X=x) = \frac{x+1}{m}, \quad x = 1,2,3,4,5,6.$$ We need to find:
i) The value of $m$.
ii) The expected value $E[X]$.
iii) The standard deviation of $X$.
2. **Step i) Find $m$:**
Since $P(X=x)$ is a pmf, the sum of probabilities over all $x$ must be 1:
$$\sum_{x=1}^6 P(X=x) = 1 \implies \sum_{x=1}^6 \frac{x+1}{m} = 1.$$
Calculate the sum in the numerator:
$$\sum_{x=1}^6 (x+1) = (1+1) + (2+1) + (3+1) + (4+1) + (5+1) + (6+1) = 2 + 3 + 4 + 5 + 6 + 7 = 27.$$
So:
$$\frac{27}{m} = 1 \implies m = 27.$$
3. **Step ii) Calculate $E[X]$:**
The expected value is:
$$E[X] = \sum_{x=1}^6 x P(X=x) = \sum_{x=1}^6 x \frac{x+1}{27} = \frac{1}{27} \sum_{x=1}^6 x(x+1).$$
Calculate the sum:
$$\sum_{x=1}^6 x(x+1) = \sum_{x=1}^6 (x^2 + x) = \sum_{x=1}^6 x^2 + \sum_{x=1}^6 x.$$
Use formulas:
$$\sum_{x=1}^6 x = \frac{6 \times 7}{2} = 21,$$
$$\sum_{x=1}^6 x^2 = \frac{6 \times 7 \times 13}{6} = 91.$$
So:
$$\sum_{x=1}^6 x(x+1) = 91 + 21 = 112.$$
Therefore:
$$E[X] = \frac{112}{27} \approx 4.148.$$
4. **Step iii) Calculate standard deviation:**
First find $E[X^2]$:
$$E[X^2] = \sum_{x=1}^6 x^2 P(X=x) = \sum_{x=1}^6 x^2 \frac{x+1}{27} = \frac{1}{27} \sum_{x=1}^6 x^2 (x+1) = \frac{1}{27} \sum_{x=1}^6 (x^3 + x^2).$$
Calculate sums:
$$\sum_{x=1}^6 x^3 = \left(\frac{6 \times 7}{2}\right)^2 = 21^2 = 441,$$
$$\sum_{x=1}^6 x^2 = 91.$$
So:
$$\sum_{x=1}^6 (x^3 + x^2) = 441 + 91 = 532.$$
Hence:
$$E[X^2] = \frac{532}{27} \approx 19.704.$$
Variance is:
$$Var(X) = E[X^2] - (E[X])^2 = \frac{532}{27} - \left(\frac{112}{27}\right)^2 = \frac{532}{27} - \frac{12544}{729}.$$
Calculate common denominator 729:
$$\frac{532}{27} = \frac{532 \times 27}{27 \times 27} = \frac{14364}{729}.$$
So:
$$Var(X) = \frac{14364}{729} - \frac{12544}{729} = \frac{1820}{729} \approx 2.4966.$$
Standard deviation is:
$$\sigma = \sqrt{Var(X)} = \sqrt{\frac{1820}{729}} \approx 1.58.$$
**Final answers:**
- $m = 27$
- $E[X] = \frac{112}{27} \approx 4.148$
- Standard deviation $\approx 1.58$