Discrete Probability
1. **Determine the missing probability in the distribution.**
Given probabilities: $0.07, 0.20, 0.38, ?, 0.13$
Sum of probabilities must be 1. So,
$$0.07 + 0.20 + 0.38 + p(3) + 0.13 = 1$$
Sum known values:
$$0.07 + 0.20 + 0.38 + 0.13 = 0.78$$
So,
$$p(3) = 1 - 0.78 = 0.22$$
2. **Check if the distribution is a probability distribution.**
Probabilities: $0.05, 0.25, 0.35, 0.25, 0.10$
Check sum:
$$0.05 + 0.25 + 0.35 + 0.25 + 0.10 = 1.00$$
All probabilities between 0 and 1 and sum to 1, so this is a valid probability distribution.
3. **Check if the distribution is valid.**
Probabilities given: $\frac{3}{4}, \frac{1}{10}, \frac{1}{20}, \frac{1}{25}, \frac{1}{50}, -\frac{1}{100}$
Note the negative probability $-\frac{1}{100}$ which is invalid.
Thus this is not a valid probability distribution because probabilities cannot be negative.
4. For the distribution with X from 0 to 8 and given probabilities, calculate mean, variance, and standard deviation.
- Mean (Expected value):
$$E(X) = \sum x \cdot P(x)$$
$$= 0\times0.02 + 1\times0.02 + 2\times0.06 + 3\times0.06 + 4\times0.08 + 5\times0.22 + 6\times0.30 + 7\times0.16 + 8\times0.08$$
Calculate stepwise:
$$= 0 + 0.02 + 0.12 + 0.18 + 0.32 + 1.10 + 1.80 + 1.12 + 0.64 = 5.3$$
- Variance:
First find $E(X^2)$:
$$E(X^2) = \sum x^2 \cdot P(x)$$
$$= 0^2\times0.02 + 1^2\times0.02 + 2^2\times0.06 + 3^2\times0.06 + 4^2\times0.08 + 5^2\times0.22 + 6^2\times0.30 + 7^2\times0.16 + 8^2\times0.08$$
$$= 0 + 0.02 + 0.24 + 0.54 + 1.28 + 5.50 + 10.8 + 7.84 + 5.12 = 31.34$$
Variance:
$$\sigma^2 = E(X^2) - (E(X))^2 = 31.34 - (5.3)^2 = 31.34 - 28.09 = 3.25$$
- Standard deviation:
$$\sigma = \sqrt{3.25} \approx 1.803$$
5. For the distribution with $x = 4,5,6,7,8,9$ and $P(X=x)$ given:
\(P(X=4)=\frac{1}{16}, P(X=5)=\frac{1}{16}, P(X=6)=\frac{1}{4}, P(X=7)=\frac{3}{16}, P(X=8)=\frac{1}{8}, P(X=9)=\frac{5}{16}\)
- Prove it is a PMF:
Sum probabilities:
$$\frac{1}{16} + \frac{1}{16} + \frac{1}{4} + \frac{3}{16} + \frac{1}{8} + \frac{5}{16} =$$
Convert all to sixteenths:
$$1/16 + 1/16 + 4/16 + 3/16 + 2/16 + 5/16 = 16/16 = 1$$
Hence valid PMF.
- Expected value:
$$E(X) = \sum x \cdot P(x) = 4\times\frac{1}{16} + 5\times\frac{1}{16} + 6\times\frac{1}{4} + 7\times\frac{3}{16} + 8\times\frac{1}{8} + 9\times\frac{5}{16}$$
Calculate:
$$= \frac{4}{16} + \frac{5}{16} + \frac{6}{4} + \frac{21}{16} + \frac{8}{8} + \frac{45}{16}$$
Simplify:
$$= 0.25 + 0.3125 + 1.5 + 1.3125 + 1 + 2.8125 = 7.1875$$
- Variance $\sigma^2$:
Calculate $E(X^2)$:
$$= 4^2\times\frac{1}{16} + 5^2\times\frac{1}{16} + 6^2\times\frac{1}{4} + 7^2\times\frac{3}{16} + 8^2\times\frac{1}{8} + 9^2\times\frac{5}{16}$$
$$= \frac{16}{16} + \frac{25}{16} + \frac{36}{4} + \frac{147}{16} + \frac{64}{8} + \frac{405}{16}$$
Simplify:
$$= 1 + 1.5625 + 9 + 9.1875 + 8 + 25.3125 = 54.0625$$
Variance:
$$\sigma^2 = E(X^2) - (E(X))^2 = 54.0625 - (7.1875)^2 = 54.0625 - 51.66 = 2.40$$
Standard deviation:
$$\sigma = \sqrt{2.40} \approx 1.55$$
- Cumulative distribution function $F(X)$:
$$F(4) = \frac{1}{16} = 0.0625$$
$$F(5) = F(4) + \frac{1}{16} = 0.125$$
$$F(6) = F(5) + \frac{1}{4} = 0.125 + 0.25 = 0.375$$
$$F(7) = F(6) + \frac{3}{16} = 0.375 + 0.1875 = 0.5625$$
$$F(8) = F(7) + \frac{1}{8} = 0.5625 + 0.125 = 0.6875$$
$$F(9) = F(8) + \frac{5}{16} = 0.6875 + 0.3125 = 1.0$$
- Probabilities requested:
$$P(X > 3) = 1 - F(3) = 1$$
(since $X$ starts at 4)
$$P(4 < X < 7) = P(X = 5) + P(X=6) = \frac{1}{16} + \frac{1}{4} = 0.0625 + 0.25 = 0.3125$$
$$P(X=6.5) = 0$$ (not a discrete variable value)
- $E(X)$ and $\sigma^2$ already found above.
6. Distribution with X values 0,1,3,4,6 and probabilities $k, 0.3, 0.3, 0.2, 0.1$
- Find $k$:
Sum probabilities = 1
$$k + 0.3 + 0.3 + 0.2 + 0.1 = 1$$
$$k + 0.9 = 1 \Rightarrow k = 0.1$$
- Expected value:
$$E(X) = 0\times0.1 + 1\times0.3 + 3\times0.3 + 4\times0.2 + 6\times0.1 = 0 + 0.3 + 0.9 + 0.8 + 0.6 = 2.6$$
- CDF:
$$F(0) = 0.1$$
$$F(1) = 0.1 + 0.3 = 0.4$$
$$F(3) = 0.4 + 0.3 = 0.7$$
$$F(4) = 0.7 + 0.2 = 0.9$$
$$F(6) = 0.9 + 0.1 = 1$$
- Variance:
Calculate $E(X^2)$:
$$= 0^2\times0.1 + 1^2\times0.3 + 3^2\times0.3 + 4^2\times0.2 + 6^2\times0.1 = 0 + 0.3 + 2.7 + 3.2 + 3.6 = 9.8$$
Variance:
$$\sigma^2 = 9.8 - (2.6)^2 = 9.8 - 6.76 = 3.04$$
Standard deviation:
$$\sigma = \sqrt{3.04} \approx 1.744$$
- Probabilities:
$$P(X \geq 4) = P(4) + P(6) = 0.2 + 0.1 = 0.3$$
$$P(1 \leq X \leq 4) = P(1) + P(3) + P(4) = 0.3 + 0.3 + 0.2 = 0.8$$
$$P(X=1) = 0.3$$