Covariance Negative E4Ecba
1. **Problem Statement:** Calculate the covariance $\mathrm{Cov}(X,Y)$ given the joint probability distribution table:
| X \ Y | 0 | 1 | 2 |
|-------|---|---|---|
| 0 | \frac{1}{9} | \frac{2}{9} | \frac{1}{9} |
| 1 | \frac{2}{9} | \frac{2}{9} | 0 |
| 2 | \frac{1}{9} | 0 | 0 |
2. **Formula:**
$$\mathrm{Cov}(X,Y) = E[XY] - E[X]E[Y]$$
where $E[XY]$ is the expected value of the product $XY$, and $E[X]$, $E[Y]$ are the expected values of $X$ and $Y$ respectively.
3. **Calculate $E[X]$:**
$$E[X] = \sum_x x P_X(x)$$
First find marginal $P_X(x)$ by summing over $Y$:
- $P_X(0) = \frac{1}{9} + \frac{2}{9} + \frac{1}{9} = \frac{4}{9}$
- $P_X(1) = \frac{2}{9} + \frac{2}{9} + 0 = \frac{4}{9}$
- $P_X(2) = \frac{1}{9} + 0 + 0 = \frac{1}{9}$
Then:
$$E[X] = 0 \times \frac{4}{9} + 1 \times \frac{4}{9} + 2 \times \frac{1}{9} = 0 + \frac{4}{9} + \frac{2}{9} = \frac{6}{9} = \frac{2}{3}$$
4. **Calculate $E[Y]$:**
Find marginal $P_Y(y)$ by summing over $X$:
- $P_Y(0) = \frac{1}{9} + \frac{2}{9} + \frac{1}{9} = \frac{4}{9}$
- $P_Y(1) = \frac{2}{9} + \frac{2}{9} + 0 = \frac{4}{9}$
- $P_Y(2) = \frac{1}{9} + 0 + 0 = \frac{1}{9}$
Then:
$$E[Y] = 0 \times \frac{4}{9} + 1 \times \frac{4}{9} + 2 \times \frac{1}{9} = 0 + \frac{4}{9} + \frac{2}{9} = \frac{6}{9} = \frac{2}{3}$$
5. **Calculate $E[XY]$:**
$$E[XY] = \sum_x \sum_y xy P(x,y)$$
Calculate each term:
- $(0)(0) \times \frac{1}{9} = 0$
- $(0)(1) \times \frac{2}{9} = 0$
- $(0)(2) \times \frac{1}{9} = 0$
- $(1)(0) \times \frac{2}{9} = 0$
- $(1)(1) \times \frac{2}{9} = \frac{2}{9}$
- $(1)(2) \times 0 = 0$
- $(2)(0) \times \frac{1}{9} = 0$
- $(2)(1) \times 0 = 0$
- $(2)(2) \times 0 = 0$
Sum:
$$E[XY] = \frac{2}{9}$$
6. **Calculate covariance:**
$$\mathrm{Cov}(X,Y) = E[XY] - E[X]E[Y] = \frac{2}{9} - \left(\frac{2}{3} \times \frac{2}{3}\right) = \frac{2}{9} - \frac{4}{9} = -\frac{2}{9}$$
7. **Interpretation:**
The covariance is negative, $-\frac{2}{9}$, indicating that when $X$ increases, $Y$ tends to decrease on average, showing a negative linear relationship between $X$ and $Y$ in this distribution.