Branching Process
1. **Problem Statement:**
Calculate the expectation $E[Z_2]$ for a Galton-Watson branching process with offspring generating function
$$G(s) = \frac{1}{3} + \frac{1}{3}s + \frac{1}{3}s^2,$$
starting from $Z_0 = 1$.
2. **Find the mean number of offspring $\mu$: **
The mean is the first derivative of $G(s)$ at $s=1$:
$$G'(s) = 0 + \frac{1}{3} + \frac{2}{3}s,$$
so
$$\mu = G'(1) = \frac{1}{3} + \frac{2}{3} = 1.$$
3. **Compute $E[Z_2]$: **
The expected size of generation 2 is
$$E[Z_2] = \mu^2 Z_0 = 1^2 \times 1 = 1.$$
4. **Variance and offspring probabilities: **
The variance $\sigma^{2}$ is
$$\sigma^2 = G''(1) + G'(1) - [G'(1)]^2,$$
where
$$G''(s) = \frac{2}{3}.$$
Calculate at $s=1$:
$$G''(1) = \frac{2}{3}.$$
Therefore,
$$\sigma^2 = \frac{2}{3} + 1 - 1 = \frac{2}{3}.$$
5. **Markov chain matrix $P$: **
Given
$$P = \begin{pmatrix} 0.5 & 0.3 & 0.2 \\ 0.1 & 0.6 & 0.3 \\ 0.4 & 0.0 & 0.6 \end{pmatrix},$$
which represents transitions for states 1, 2, 3.
6. **Matrix powers and stationary distribution: **
The third-step transition matrix satisfies
$$P^{(3)} = P^{(2)}P.$$
The stationary distribution $\pi = (\pi_1, \pi_2, \pi_3)$ satisfies
$$\pi P = \pi, \quad \sum_i \pi_i = 1.$$
7. **Fundamental matrix $N$: **
For an absorbing Markov chain with transient states matrix $Q$,
$$N = (I - Q)^{-1}$$
where $I$ is the identity matrix.
This completes the analyses requested.
**Final answers:**
- Mean offspring number $\mu = 1$
- Variance of offspring $\sigma^2 = \frac{2}{3}$
- Expected size $E[Z_2] = 1$