Random Variate Generators
1. **Problem a**: Develop a formula for a random variate generator for the random variable $X$ with p.d.f.
$$f(x) = \begin{cases} e^{2x} & -\infty < x \leq 0 \\ e^{-2x} & 0 < x < \infty \end{cases}$$
- Step 1: Find the CDF $F(x)$ by integrating $f(x)$.
For $x \leq 0$:
$$F(x) = \int_{-\infty}^x e^{2t} dt = \left[ \frac{e^{2t}}{2} \right]_{-\infty}^x = \frac{e^{2x}}{2}$$
For $x > 0$:
$$F(x) = F(0) + \int_0^x e^{-2t} dt = \frac{1}{2} + \left[-\frac{e^{-2t}}{2} \right]_0^x = \frac{1}{2} + \frac{1 - e^{-2x}}{2} = 1 - \frac{e^{-2x}}{2}$$
- Step 2: The CDF is
$$F(x) = \begin{cases} \frac{e^{2x}}{2} & x \leq 0 \\ 1 - \frac{e^{-2x}}{2} & x > 0 \end{cases}$$
- Step 3: To generate $X$ from uniform $U \sim \text{Uniform}(0,1)$, invert $F$:
If $U < 0.5$, solve $U = \frac{e^{2x}}{2} \Rightarrow e^{2x} = 2U \Rightarrow x = \frac{1}{2} \ln(2U)$.
If $U \geq 0.5$, solve $U = 1 - \frac{e^{-2x}}{2} \Rightarrow e^{-2x} = 2(1-U) \Rightarrow x = -\frac{1}{2} \ln(2(1-U))$.
**Random variate generator formula:**
$$X = \begin{cases} \frac{1}{2} \ln(2U) & U < 0.5 \\ -\frac{1}{2} \ln(2(1-U)) & U \geq 0.5 \end{cases}$$
2. **Problem b**: Triangular distribution with range (1,10) and mode at 4.
- Step 1: The triangular distribution CDF is piecewise:
For $x$ in $[1,4]$:
$$F(x) = \frac{(x-1)^2}{(10-1)(4-1)} = \frac{(x-1)^2}{27}$$
For $x$ in $[4,10]$:
$$F(x) = 1 - \frac{(10 - x)^2}{(10-1)(10-4)} = 1 - \frac{(10 - x)^2}{54}$$
- Step 2: To generate $X$ from $U \sim \text{Uniform}(0,1)$:
If $U < F(4) = \frac{(4-1)^2}{27} = \frac{9}{27} = \frac{1}{3}$,
$$X = 1 + \sqrt{27 U}$$
If $U \geq \frac{1}{3}$,
$$X = 10 - \sqrt{54 (1 - U)}$$
- Step 3: Generate 10 values by sampling $U_i$ and applying above.
- Step 4: Compute sample mean $\bar{X} = \frac{1}{10} \sum_{i=1}^{10} X_i$.
- Step 5: True mean of triangular distribution:
$$\mu = \frac{1 + 10 + 4}{3} = 5$$
Compare sample mean to 5.
3. **Problem c**: Exponentially distributed lead times with mean 3.7 days.
- Step 1: Exponential distribution parameter $\lambda = \frac{1}{3.7}$.
- Step 2: Generate 5 random values $X_i$ from $U_i \sim \text{Uniform}(0,1)$:
$$X_i = -\frac{1}{\lambda} \ln(1 - U_i) = -3.7 \ln(1 - U_i)$$
4. **Problem d**: L’ecuyer combined generator with parameters:
$a=157, m=32363, a_2=146, m_2=31727, a_3=142, m_3=31657$
Initial seeds: $X_{1,0}=100, X_{2,0}=300, X_{3,0}=500$
- Step 1: For each step $n$, compute:
$$X_{1,n} = (a X_{1,n-1}) \bmod m$$
$$X_{2,n} = (a_2 X_{2,n-1}) \bmod m_2$$
$$X_{3,n} = (a_3 X_{3,n-1}) \bmod m_3$$
- Step 2: Combine:
$$Z_n = (X_{1,n} - X_{2,n} + X_{3,n}) \bmod (m - 1)$$
- Step 3: Normalize:
$$U_n = \frac{Z_n}{m}$$
- Step 4: Generate 5 values by iterating from $n=1$ to 5.
5. **Problem e**: Given CDF
$$F(x) = \frac{x^4}{16}, \quad 0 \leq x \leq 2$$
- Step 1: Invert CDF for $U \sim \text{Uniform}(0,1)$:
$$U = \frac{x^4}{16} \Rightarrow x = (16 U)^{1/4}$$
- Step 2: Generate sample values $X_i = (16 U_i)^{1/4}$.
- Step 3: Compute sample mean $\bar{X} = \frac{1}{n} \sum X_i$.
- Step 4: True mean:
$$E[X] = \int_0^2 x f(x) dx = \int_0^2 x \frac{d}{dx}F(x) dx = \int_0^2 x \frac{4x^3}{16} dx = \int_0^2 \frac{x^4}{4} dx = \frac{1}{4} \left[ \frac{x^5}{5} \right]_0^2 = \frac{1}{4} \times \frac{32}{5} = \frac{8}{5} = 1.6$$
Compare sample mean to 1.6.