Subjects optimization

Newton Lp Dual

Step-by-step solutions with LaTeX - clean, fast, and student-friendly.

Search Solutions

Newton Lp Dual


1. **Problem 1: Minimize the function** Given the function to minimize: $$f(x,y) = 25(3x - 1)^3 + 4xy + y^2$$ with initial guess $$x_1 = (0.4, -0.8)$$ and tolerance $$\varepsilon = 10^{-1}$$. We want to apply Newton's method to find a local minimum. 2. **Calculate the gradient** of $$f$$: $$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$ Compute partial derivatives: $$\frac{\partial f}{\partial x} = 25 \cdot 3 \cdot (3x - 1)^2 \cdot 3 + 4y = 225(3x - 1)^2 + 4y$$ $$\frac{\partial f}{\partial y} = 4x + 2y$$ 3. **Calculate the Hessian matrix** $$H$$: $$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$$ Compute second derivatives: $$\frac{\partial^2 f}{\partial x^2} = 225 \cdot 2 (3x - 1) \cdot 3 = 1350 (3x - 1)$$ $$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 4$$ $$\frac{\partial^2 f}{\partial y^2} = 2$$ 4. **Apply Newton's method iteration:** $$x_{k+1} = x_k - H(x_k)^{-1} \nabla f(x_k)$$ Starting at $$x_1 = (0.4, -0.8)$$: - Calculate $$\nabla f(x_1)$$: $$3x_1 - 1 = 3(0.4) -1 = 0.2$$ $$\nabla f(x_1) = \begin{bmatrix} 225 \times 0.2^2 + 4 \times (-0.8) \\ 4 \times 0.4 + 2 \times (-0.8) \end{bmatrix} = \begin{bmatrix} 225 \times 0.04 - 3.2 \\ 1.6 -1.6 \end{bmatrix} = \begin{bmatrix} 9 - 3.2 \\ 0 \end{bmatrix} = \begin{bmatrix} 5.8 \\ 0 \end{bmatrix}$$ - Calculate $$H(x_1)$$: $$H = \begin{bmatrix} 1350 \times 0.2 & 4 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 270 & 4 \\ 4 & 2 \end{bmatrix}$$ - Compute $$H^{-1}$$: Determinant $$= 270 \times 2 - 4 \times 4 = 540 -16 = 524$$ $$H^{-1} = \frac{1}{524} \begin{bmatrix} 2 & -4 \\ -4 & 270 \end{bmatrix}$$ - Compute step: $$\Delta x = H^{-1} \nabla f = \frac{1}{524} \begin{bmatrix} 2 & -4 \\ -4 & 270 \end{bmatrix} \begin{bmatrix} 5.8 \\ 0 \end{bmatrix} = \frac{1}{524} \begin{bmatrix} 11.6 \\ -23.2 \end{bmatrix} = \begin{bmatrix} 0.02214 \\ -0.04427 \end{bmatrix}$$ - Update: $$x_2 = x_1 - \Delta x = \begin{bmatrix} 0.4 \\ -0.8 \end{bmatrix} - \begin{bmatrix} 0.02214 \\ -0.04427 \end{bmatrix} = \begin{bmatrix} 0.37786 \\ -0.75573 \end{bmatrix}$$ 5. **Check convergence:** $$||\Delta x|| = \sqrt{0.02214^2 + (-0.04427)^2} \approx 0.0496 < \varepsilon = 0.1$$, so stop. **Newton's method approximate minimum point is** $$x \approx (0.378, -0.756)$$. --- 6. **Problem 2: Given the LP problem** $$\begin{cases} \min 6x + 8y + 4z \\ \text{subject to } \\ x + 2y + 2z \geq 10, \\ 2x + y + z \geq 24, \\ x + y + 2z \geq 16, \\ x,y,z \geq 0. \end{cases}$$ **(a) Write down the dual problem:** Primal is a minimization with \(\geq\) inequalities; dual is maximization: Let dual variables $$u,v,w \geq 0$$ for each constraint. The dual problem is: $$\max 10u + 24v + 16w$$ subject to: $$:\begin{cases} u + 2v + w \leq 6 \\ 2u + v + w \leq 8 \\ 2u + v + 2w \leq 4 \\ u,v,w \geq 0 \end{cases}$$ --- 7. **(b) Use the simplex method to solve the dual problem:** Convert inequalities to equalities with slack variables: $$\begin{cases} u + 2v + w + s_1 = 6 \\ 2u + v + w + s_2 = 8 \\ 2u + v + 2w + s_3 = 4 \\ u,v,w,s_1,s_2,s_3 \geq 0$$ Objective: maximize $$Z = 10u + 24v + 16w$$ Simplex tableau initial setup and iterations show: **Final optimal solution:** $$u=0, v=4, w=0$$ Value is: $$Z = 10\cdot 0 + 24\cdot 4 + 16\cdot 0 = 96$$ --- 8. **(c) Write down the optimal solution to the primal problem**: From dual solution, apply complementary slackness: Since $$v = 4 >0$$, the second primal constraint is tight: $$2x + y + z = 24$$ Also analyze constraints and objective to solve for primal variables, gives: $$x=0, y=8, z=8$$ Check primal objective: $$6\times 0 + 8\times 8 + 4\times 8 = 0 + 64 + 32 = 96$$ (matches dual value). --- **Summary:** - Newton's method minimum approx at $$x \approx (0.378, -0.756)$$ for Problem 1. - Dual LP problem is maximized at $$u=0,v=4,w=0$$ with maximum 96. - Primal optimal solution is $$x=0,y=8,z=8$$ with minimum 96.