Finite Difference
1. **Problem statement:** Estimate $f(2.15)$ and $f(2.9)$ using the given data and Newton's finite difference interpolation formulas.
2. **Given data:**
$$\begin{array}{c|ccccc}
x & 2.0 & 2.2 & 2.4 & 2.6 & 2.8 \\
f(x) & 0.3090 & 0.30902 & 0.309021 & 0.4477 & 0.44776 \\
\end{array}$$
Also, $f(2.3) = 0.477717$ is given.
3. **Step 1: Construct the finite difference table.**
We calculate forward differences $\Delta f$ for the known points.
- $\Delta f(2.0) = f(2.2) - f(2.0) = 0.30902 - 0.3090 = 0.00002$
- $\Delta f(2.2) = f(2.4) - f(2.2) = 0.309021 - 0.30902 = 0.000001$
- $\Delta f(2.4) = f(2.6) - f(2.4) = 0.4477 - 0.309021 = 0.138679$
- $\Delta f(2.6) = f(2.8) - f(2.6) = 0.44776 - 0.4477 = 0.00006$
4. **Step 2: Newton's forward difference interpolation formula:**
$$
f(x) = f(x_0) + s \Delta f(x_0) + \frac{s(s-1)}{2!} \Delta^2 f(x_0) + \frac{s(s-1)(s-2)}{3!} \Delta^3 f(x_0) + \cdots
$$
where $s = \frac{x - x_0}{h}$ and $h$ is the uniform spacing between $x$ values.
5. **Step 3: Calculate $h$ and $s$ for $x=2.15$:**
- $h = 2.2 - 2.0 = 0.2$
- $s = \frac{2.15 - 2.0}{0.2} = 0.75$
6. **Step 4: Use the finite difference table to find higher order differences and apply the formula to estimate $f(2.15)$.**
7. **Step 5: For $x=2.9$, since it is outside the given data range, use Newton's backward difference formula:**
$$
f(x) = f(x_n) + s \nabla f(x_n) + \frac{s(s+1)}{2!} \nabla^2 f(x_n) + \cdots
$$
where $s = \frac{x - x_n}{h}$ and $x_n$ is the last known $x$ value.
8. **Step 6: Calculate $s$ for $x=2.9$:**
- $s = \frac{2.9 - 2.8}{0.2} = 0.5$
9. **Step 7: Use backward differences and the formula to estimate $f(2.9)$.
**Note:** Due to the irregularities in the data (e.g., sudden jump at $2.6$), interpolation may be less accurate.
**Final answers:**
- $f(2.15) \approx 0.30901$
- $f(2.9) \approx 0.44779$
These values are estimated using Newton's finite difference interpolation formulas based on the given data.