Meal Planning
1. **Problem Statement:** Angela and Zooey want to decide how many fish dinners ($x$) and beef dinners ($y$) to prepare each night to maximize profit, given constraints on total meals, preparation time, and customer preferences.
2. **Define variables:**
- Let $x$ = number of fish dinners
- Let $y$ = number of beef dinners
3. **Constraints:**
- Maximum meals: $$x + y \leq 60$$
- Preparation time: fish takes 15 min, beef takes 30 min (twice as long), total 20 hours = 1200 minutes
$$15x + 30y \leq 1200$$
- Customer ratio: at least 3 fish for every 2 beef dinners
$$x \geq \frac{3}{2} y$$
- At least 10% beef dinners:
$$y \geq 0.1(x + y) \Rightarrow y \geq 0.1x + 0.1y \Rightarrow 0.9y \geq 0.1x \Rightarrow y \geq \frac{1}{9}x$$
- Non-negativity:
$$x \geq 0, \quad y \geq 0$$
4. **Objective function (profit):**
- Profit from fish dinner = 12
- Profit from beef dinner = 16
$$\text{Maximize } P = 12x + 16y$$
5. **Summary of model:**
$$\begin{cases}
x + y \leq 60 \\
15x + 30y \leq 1200 \\
x \geq \frac{3}{2} y \\
y \geq \frac{1}{9} x \\
x,y \geq 0
\end{cases}$$
6. **Solve graphically:**
- Rewrite constraints:
- $x + y = 60$
- $15x + 30y = 1200 \Rightarrow x + 2y = 80$
- $x = \frac{3}{2} y$
- $y = \frac{1}{9} x$
- Find feasible region bounded by these lines.
- Check corner points:
- Intersection of $x + y = 60$ and $x + 2y = 80$:
$$x + y = 60 \Rightarrow x = 60 - y$$
Substitute into $x + 2y = 80$:
$$60 - y + 2y = 80 \Rightarrow y = 20, x = 40$$
- Intersection of $x = \frac{3}{2} y$ and $x + y = 60$:
Substitute $x$:
$$\frac{3}{2} y + y = 60 \Rightarrow \frac{5}{2} y = 60 \Rightarrow y = 24, x = 36$$
- Intersection of $x = \frac{3}{2} y$ and $x + 2y = 80$:
Substitute $x$:
$$\frac{3}{2} y + 2y = 80 \Rightarrow \frac{7}{2} y = 80 \Rightarrow y = \frac{160}{7} \approx 22.86, x = 34.29$$
- Evaluate profit $P$ at these points:
- $(40,20)$: $12(40) + 16(20) = 480 + 320 = 800$
- $(36,24)$: $12(36) + 16(24) = 432 + 384 = 816$
- $(34.29,22.86)$: $12(34.29) + 16(22.86) \approx 411.48 + 365.76 = 777.24$
- Maximum profit at $(36,24)$.
7. **Answer for (i):**
- Prepare 36 fish dinners and 24 beef dinners each night for maximum profit of 816.
---
8. **(ii) Equal profit for fish and beef dinners:**
- New profit per fish dinner = 16 (same as beef)
- Objective: $P = 16x + 16y = 16(x + y)$
- Maximize $x + y$ subject to constraints.
- Max $x + y$ is 60 (from first constraint).
- So any combination with $x + y = 60$ is optimal.
- The solution is no longer unique; profit depends only on total meals.
---
9. **(iii) At least 20% beef dinners:**
- New constraint:
$$y \geq 0.2(x + y) \Rightarrow y \geq 0.2x + 0.2y \Rightarrow 0.8y \geq 0.2x \Rightarrow y \geq \frac{1}{4} x$$
- Replace old $y \geq \frac{1}{9} x$ with $y \geq \frac{1}{4} x$.
- Check intersection of $x = \frac{3}{2} y$ and $y = \frac{1}{4} x$:
Substitute $x$:
$$y = \frac{1}{4} \times \frac{3}{2} y = \frac{3}{8} y$$
This implies $y = \frac{3}{8} y$, only true if $y=0$.
- So feasible region shrinks.
- Check corner points again with new constraint:
- Intersection of $x + y = 60$ and $x + 2y = 80$ remains $(40,20)$.
- Check if $(40,20)$ satisfies $y \geq \frac{1}{4} x$:
$$20 \geq \frac{1}{4} \times 40 = 10$$ True.
- Intersection of $x = \frac{3}{2} y$ and $y = \frac{1}{4} x$:
Substitute $x$:
$$y = \frac{1}{4} \times \frac{3}{2} y = \frac{3}{8} y$$
Only $y=0$.
- So feasible region is smaller, but $(36,24)$ from before satisfies $y \geq \frac{1}{4} x$?
$$24 \geq \frac{1}{4} \times 36 = 9$$ True.
- So solution remains feasible.
- However, the constraint $y \geq \frac{1}{4} x$ is stricter than $y \geq \frac{1}{9} x$, so the feasible region shrinks, possibly reducing maximum profit.
- Recalculate profit at $(36,24)$: 816 (still feasible).
- Check if other points violate new constraint.
- Conclusion: The stricter beef minimum may reduce flexibility but does not change the optimal solution here.
---
**Final answers:**
- (i) Prepare 36 fish and 24 beef dinners for max profit 816.
- (ii) Equal profit makes any combination with total 60 meals optimal.
- (iii) Increasing beef minimum to 20% does not change optimal solution but reduces feasible region.