Feasibility Region E1897A
1. **Problem statement:** We have the feasible region
$$S = \{(x_1,x_2) \in \mathbb{R}^2 : -x_1 - x_2 \leq 1, -x_1 + 2x_2 \geq 2, x_1 - x_2 \leq -1, x_1 \leq 0, x_2 \geq 0\}$$
We want to represent $S$ graphically, find a feasible nondegenerate basic solution, two distinct extreme directions, and all non-extreme directions.
2. **Step 1: Understand constraints and feasible region**
- Rewrite inequalities:
- $-x_1 - x_2 \leq 1 \Rightarrow x_1 + x_2 \geq -1$
- $-x_1 + 2x_2 \geq 2 \Rightarrow -x_1 + 2x_2 \geq 2$
- $x_1 - x_2 \leq -1$
- $x_1 \leq 0$
- $x_2 \geq 0$
3. **Step 2: Find vertices (basic feasible solutions)**
Vertices occur at intersections of constraints. Solve pairs:
- Intersection of $x_1 = 0$ and $x_2 \geq 0$ with others:
- From $x_1 + x_2 = -1$ at $x_1=0$: $x_2 = -1$ (not feasible since $x_2 \geq 0$)
- Intersection of $-x_1 + 2x_2 = 2$ and $x_1 - x_2 = -1$:
Solve system:
$$\begin{cases} -x_1 + 2x_2 = 2 \\ x_1 - x_2 = -1 \end{cases}$$
Add equations:
$$(-x_1 + 2x_2) + (x_1 - x_2) = 2 + (-1) \Rightarrow x_2 = 1$$
Substitute $x_2=1$ into $x_1 - x_2 = -1$:
$$x_1 - 1 = -1 \Rightarrow x_1 = 0$$
So vertex at $(0,1)$.
- Check if $(0,1)$ satisfies all constraints:
- $x_1 + x_2 = 1 \geq -1$ ✓
- $-x_1 + 2x_2 = 2 \geq 2$ ✓
- $x_1 - x_2 = -1 \leq -1$ ✓
- $x_1 = 0 \leq 0$ ✓
- $x_2 = 1 \geq 0$ ✓
- Intersection of $x_1 = 0$ and $x_1 + x_2 = -1$ is infeasible.
- Intersection of $x_1 - x_2 = -1$ and $x_1 + x_2 = -1$:
Add:
$$2x_1 = -2 \Rightarrow x_1 = -1$$
Substitute into $x_1 - x_2 = -1$:
$$-1 - x_2 = -1 \Rightarrow x_2 = 0$$
Vertex at $(-1,0)$.
- Check feasibility:
- $x_1 + x_2 = -1 \geq -1$ ✓
- $-x_1 + 2x_2 = 1 \geq 2$ ✗ (fails)
So $(-1,0)$ is not feasible.
- Intersection of $-x_1 + 2x_2 = 2$ and $x_2 = 0$:
Substitute $x_2=0$:
$$-x_1 = 2 \Rightarrow x_1 = -2$$
Check $x_1 - x_2 = -1$:
$$-2 - 0 = -2 \leq -1$$ ✓
Check $x_1 \leq 0$:
$$-2 \leq 0$$ ✓
Check $x_1 + x_2 \geq -1$:
$$-2 + 0 = -2 \geq -1$$ ✗ (fails)
So $(-2,0)$ not feasible.
- Intersection of $x_1 + x_2 = -1$ and $x_1 \leq 0$, $x_2 \geq 0$:
Since $x_2 \geq 0$, $x_1 = -1 - x_2 \leq 0$ implies $x_2 \geq -1 - 0 = -1$ which is true.
But $x_2 \geq 0$ restricts $x_2$ to $[0, \infty)$.
So points on line segment from $(-1,0)$ upwards.
- Check if $(-1,0)$ feasible:
- $-x_1 + 2x_2 = 1 \geq 2$ ✗ no
- Check if $(-0.5, -0.5)$ feasible:
Not in $x_2 \geq 0$.
- So feasible vertices are:
- $(0,1)$
- Intersection of $x_1 + x_2 = -1$ and $x_2 = 0$:
$$x_1 + 0 = -1 \Rightarrow x_1 = -1$$
Check $x_1 - x_2 = -1$:
$$-1 - 0 = -1 \leq -1$$ ✓
Check $-x_1 + 2x_2 = 1 \geq 2$ ✗ no
- So only vertex in $S$ is $(0,1)$.
4. **Step 3: Feasible nondegenerate basic solution**
- $(0,1)$ is feasible and satisfies 2 constraints with equality:
- $-x_1 + 2x_2 = 2$
- $x_1 \leq 0$ (active at $x_1=0$)
- $x_2 \geq 0$ (active at $x_2=1$ but not equality)
- So $(0,1)$ is a feasible nondegenerate basic solution.
5. **Step 4: Extreme directions**
- Extreme directions satisfy all constraints with inequalities replaced by $\leq 0$ or $\geq 0$ and lie in the recession cone.
- The recession cone $D$ is:
$$D = \{d \in \mathbb{R}^2 : -d_1 - d_2 \leq 0, -d_1 + 2d_2 \geq 0, d_1 - d_2 \leq 0, d_1 \leq 0, d_2 \geq 0\}$$
- Find extreme rays of $D$:
- Try $d_1=0$, $d_2=1$:
Check:
$$-0 - 1 = -1 \leq 0$$ ✓
$$-0 + 2(1) = 2 \geq 0$$ ✓
$$0 - 1 = -1 \leq 0$$ ✓
$$0 \leq 0$$ ✓
$$1 \geq 0$$ ✓
So $d^{(1)} = (0,1)$ is an extreme direction.
- Try $d_1 = -1$, $d_2 = 0$:
Check:
$$-(-1) - 0 = 1 \leq 0$$ ✗ no
- Try $d_1 = -1$, $d_2 = -1$:
$d_2$ must be $\geq 0$, so no.
- Try $d_1 = -1$, $d_2 = 1$:
Check:
$$-(-1) - 1 = 0 \leq 0$$ ✓
$$-(-1) + 2(1) = 1 + 2 = 3 \geq 0$$ ✓
$$-1 - 1 = -2 \leq 0$$ ✓
$$-1 \leq 0$$ ✓
$$1 \geq 0$$ ✓
So $d^{(2)} = (-1,1)$ is an extreme direction.
6. **Step 5: Non-extreme directions**
- Any positive linear combination of $d^{(1)}$ and $d^{(2)}$ is a non-extreme direction.
7. **Step 6: Solve problem (P) with $c_1 = -2$, $c_2 = -4$**
- Objective: minimize
$$Z = -2x_1 - 4x_2$$
- Since $x_1 \leq 0$ and $x_2 \geq 0$, and coefficients are negative, minimizing $Z$ means maximizing $x_1$ and $x_2$ in feasible region.
- Check vertex $(0,1)$:
$$Z = -2(0) - 4(1) = -4$$
- Check direction $d^{(1)} = (0,1)$:
Moving along $d^{(1)}$ increases $x_2$ without bound, $Z$ decreases without bound.
- So problem is unbounded below.
8. **Step 7: Values for $c_1$, $c_2$ for (a), (b), (c)**
(a) Optimal solution at $x^* = (-3,2)$:
- $x^*$ must be feasible:
Check constraints:
- $-(-3) - 2 = 3 - 2 = 1 \leq 1$ ✓
- $-(-3) + 2(2) = 3 + 4 = 7 \geq 2$ ✓
- $-3 - 2 = -5 \leq -1$ ✓
- $-3 \leq 0$ ✓
- $2 \geq 0$ ✓
- For $x^*$ to be optimal, gradient $c = (c_1, c_2)$ must satisfy:
$$c^T (x - x^*) \geq 0 \quad \forall x \in S$$
- Equivalently, $c$ must be a normal vector to a supporting hyperplane at $x^*$.
- Since $x^*$ is in interior or boundary, $c$ must satisfy:
$$c_1 (x_1 - (-3)) + c_2 (x_2 - 2) \geq 0$$
- Choose $c_1, c_2$ such that $x^*$ minimizes $Z$.
(b) Problem (P) impossible:
- No feasible region $S$ or empty.
- Since $S$ is nonempty, impossible if $c$ points opposite to feasible directions and no minimum.
(c) Bounded edge of optimal solutions with $c_1 = -2$:
- Find $c_2$ such that objective is constant along an edge.
- Edge between $(0,1)$ and direction $d^{(2)} = (-1,1)$:
Objective along edge:
$$Z = -2 x_1 - c_2 x_2$$
- For edge to be optimal, gradient must be orthogonal to edge direction:
$$c^T d^{(2)} = 0 \Rightarrow -2(-1) - c_2 (1) = 0 \Rightarrow 2 - c_2 = 0 \Rightarrow c_2 = 2$$
- Edge solutions:
$$x = (0,1) + \lambda (-1,1), \lambda \geq 0$$
- Optimal value:
$$Z = -2 x_1 - 2 x_2 = -2(0 - \lambda) - 2(1 + \lambda) = 2 \lambda - 2 - 2 \lambda = -2$$
- So all points on edge have $Z = -2$.
---
**Final answers:**
- Feasible nondegenerate basic solution: $(0,1)$.
- Extreme directions: $(0,1)$ and $(-1,1)$.
- Non-extreme directions: positive combinations of these two.
- Problem (P) with $c_1 = -2$, $c_2 = -4$ is unbounded below.
- For (a) $x^* = (-3,2)$ optimal, $c$ must satisfy supporting hyperplane conditions.
- For (b) problem impossible if $S$ empty (not the case here).
- For (c) with $c_1 = -2$, $c_2 = 2$, bounded edge of optimal solutions along $x = (0,1) + \lambda (-1,1)$ with optimal value $Z = -2$.